1
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Yang D, Hansel DE, Curlin ME, Townes JM, Messer WB, Fan G, Qin X. Bimodal distribution pattern associated with the PCR cycle threshold (Ct) and implications in COVID-19 infections. Sci Rep 2022; 12:14544. [PMID: 36008543 PMCID: PMC9406279 DOI: 10.1038/s41598-022-18735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
SARS-CoV-2 is notable for its extremely high level of viral replication in respiratory epithelial cells, relative to other cell types. This may partially explain the high transmissibility and rapid global dissemination observed during the COVID-19 pandemic. Polymerase chain reaction (PCR) cycle threshold (Ct) number has been widely used as a proxy for viral load based on the inverse relationship between Ct number and amplifiable genome copies present in a sample. We examined two PCR platforms (Centers for Disease Control and Prevention 2019-nCoV Real-time RT-PCR, Integrated DNA Technologies; and TaqPath COVID-19 multi-plex combination kit, ThermoFisher Scientific) for their performance characteristics and Ct distribution patterns based on results generated from 208,947 clinical samples obtained between October 2020 and September 2021. From 14,231 positive tests, Ct values ranged from 8 to 39 and displayed a pronounced bimodal distribution. The bimodal distribution persisted when stratified by gender, age, and time period of sample collection during which different viral variants circulated. This finding may be a result of heterogeneity in disease progression or host response to infection irrespective of age, gender, or viral variants. Quantification of respiratory mucosal viral load may provide additional insight into transmission and clinical indicators helpful for infection control.
Collapse
Affiliation(s)
- Doris Yang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97239, USA
| | - Donna E Hansel
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97239, USA
| | - Marcel E Curlin
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA
| | - John M Townes
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA
| | - William B Messer
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA.,Department Molecular Microbiology and Immunology, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97239, USA
| | - Xuan Qin
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Discovery of anti-Formin-like 1 protein (FMNL1) antibodies in membranous nephropathy and other glomerular diseases. Sci Rep 2022; 12:13659. [PMID: 35953506 PMCID: PMC9372176 DOI: 10.1038/s41598-022-17696-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence has shown that podocyte-directed autoantibodies can cause membranous nephropathy (MN). In the present work we investigated sera of MN patients using a high-density peptide array covering the whole coding sequences of the human genome encompassing 7,499,126 tiled peptides. A panel of 21 proteins reactive to MN sera were identified. We focused our attention on Formin-like 1 (FMNL1), a protein expressed by macrophages in MN patients tissues. High levels of anti-FMNL1 IgG4 were demonstrated in sera of MN patients with an orthogonal methodology (ELISA) contemporary demonstrating FMNL1 positive cells in kidney co-staining with CD68 in glomeruli. High levels of circulating anti-FMNL1 IgG4 were associated with lack of remission of proteinuria, potentially indicating that autoantibodies directed against cells other than podocytes, involved in tissue repair, might play a role in MN disease progression. High serum levels of anti-FMNL1 IgGs were also observed in other non-autoimmune glomerolonephrites, i.e. idiopathic and genetic FSGS, IgAGN. These findings are suggestive of a broader role of those autoantibodies in other glomerular disease conditions.
Collapse
|
4
|
Chen H, Scott-Boyer MP, Droit A, Robert C, Belleannée C. Sperm Heterogeneity Accounts for Sperm DNA Methylation Variations Observed in the Caput Epididymis, Independently From DNMT/TET Activities. Front Cell Dev Biol 2022; 10:834519. [PMID: 35392175 PMCID: PMC8981467 DOI: 10.3389/fcell.2022.834519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Following their production in the testis, spermatozoa enter the epididymis where they gain their motility and fertilizing abilities. This post-testicular maturation coincides with sperm epigenetic profile changes that influence progeny outcome. While recent studies highlighted the dynamics of small non-coding RNAs in maturing spermatozoa, little is known regarding sperm methylation changes and their impact at the post-fertilization level. Fluorescence-activated cell sorting (FACS) was used to purify spermatozoa from the testis and different epididymal segments (i.e., caput, corpus and cauda) of CAG/su9-DsRed2; Acr3-EGFP transgenic mice in order to map out sperm methylome dynamics. Reduced representation bisulfite sequencing (RRBS-Seq) performed on DNA from these respective sperm populations indicated that high methylation changes were observed between spermatozoa from the caput vs. testis with 5,546 entries meeting our threshold values (q value <0.01, methylation difference above 25%). Most of these changes were transitory during epididymal sperm maturation according to the low number of entries identified between spermatozoa from cauda vs. testis. According to enzymatic and sperm/epididymal fluid co-incubation assays, (de)methylases were not found responsible for these sperm methylation changes. Instead, we identified that a subpopulation of caput spermatozoa displayed distinct methylation marks that were susceptible to sperm DNAse treatment and accounted for the DNA methylation profile changes observed in the proximal epididymis. Our results support the paradigm that a fraction of caput spermatozoa has a higher propensity to bind extracellular DNA, a phenomenon responsible for the sperm methylome variations observed at the post-testicular level. Further investigating the degree of conservation of this sperm heterogeneity in human will eventually provide new considerations regarding sperm selection procedures used in fertility clinics.
Collapse
Affiliation(s)
- Hong Chen
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
| | | | - Arnaud Droit
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Claude Robert
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- Faculty of Animal Sciences, Université Laval, Quebec, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- *Correspondence: Clémence Belleannée,
| |
Collapse
|