1
|
Nishihara H, Stanyon R, Tanabe H, Koga A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. Genes Cells 2021; 26:979-986. [PMID: 34570411 DOI: 10.1111/gtc.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Alpha satellite DNA is a major DNA component of primate centromeres. We previously reported that Azara's owl monkey has two types of alpha satellite DNA, OwlAlp1 and OwlAlp2. OwlAlp2 (344 bp) exhibits a sequence similarity throughout its entire length with alpha satellite DNA of closely related species. OwlAlp1 (185 bp) corresponds to the part of OwlAlp2. Based on the observation that the CENP-A protein binds to OwlAlp1, we proposed that OwlAlp1 is a relatively new repetitive DNA that replaced OwlAlp2 as the centromeric satellite DNA. However, a detailed picture of the evolutionary process of this centromere DNA replacement remains largely unknown. Here, we performed a phylogenetic analysis of OwlAlp1 and OwlAlp2 sequences, and also compared our results to alpha satellite DNA sequences of other primate species. We found that: (i) OwlAlp1 exhibits a higher similarity to OwlAlp2 than to alpha satellite DNA of other species, (ii) OwlAlp1 has a single origin, and (iii) sequence variation is lower in OwlAlp1 than in OwlAlp2. We conclude that OwlAlp1 underwent a recent and rapid expansion in the owl monkey lineage. This centromere DNA replacement could have been facilitated by the heterochromatin reorganization that is associated with the adaptation of owl monkeys to a nocturnal lifestyle.
Collapse
Affiliation(s)
- Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
2
|
Tanabe H, Kusakabe KT, Imai H, Yokota SI, Kuraishi T, Hattori S, Kai C, Koga A. The Heterochromatin Block That Functions as a Rod Cell Microlens in Owl Monkeys Formed within a 15-Myr Time Span. Genome Biol Evol 2021; 13:6127177. [PMID: 33533923 PMCID: PMC7991628 DOI: 10.1093/gbe/evab021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 01/20/2023] Open
Abstract
In rod cells of many nocturnal mammals, heterochromatin localizes to the central region of the nucleus and serves as a lens to send light efficiently to the photoreceptor region. The genus Aotus (owl monkeys) is commonly considered to have undergone a shift from diurnal to nocturnal lifestyle. We recently demonstrated that rod cells of the Aotus species Aotus azarae possess a heterochromatin block at the center of its nucleus. The purpose of the present study was to estimate the time span in which the formation of the heterochromatin block took place. We performed three-dimensional hybridization analysis of the rod cell of another species, Aotus lemurinus. This analysis revealed the presence of a heterochromatin block that consisted of the same DNA components as those in A. azarae. These results indicate that the formation was complete at or before the separation of the two species. Based on the commonly accepted evolutionary history of New World monkeys and specifically of owl monkeys, the time span for the entire formation process was estimated to be 15 Myr at most.
Collapse
Affiliation(s)
- Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Hiroyuki Imai
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Shin-Ichi Yokota
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Takeshi Kuraishi
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Chieko Kai
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan.,Institute of Industrial Science, The University of Tokyo, Komaba, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
3
|
Dominy NJ, Melin AD. Liminal Light and Primate Evolution. ANNUAL REVIEW OF ANTHROPOLOGY 2020. [DOI: 10.1146/annurev-anthro-010220-075454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptive origins of primates and anthropoid primates are topics of enduring interest to biological anthropologists. A convention in these discussions is to treat the light environment as binary—night is dark, day is light—and to impute corresponding selective pressure on the visual systems and behaviors of primates. In consequence, debate has tended to focus on whether a given trait can be interpreted as evidence of nocturnal or diurnal behavior in the primate fossil record. Such classification elides the variability in light, or the ways that primates internalize light in their environments. Here, we explore the liminality of light by focusing on what it is, its many sources, and its flux under natural conditions. We conclude by focusing on the intensity and spectral properties of twilight, and we review the mounting evidence of its importance as a cue that determines the onset or offset of primate activities as well as the entrainment of circadian rhythms.
Collapse
Affiliation(s)
- Nathaniel J. Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
4
|
Espíndola-Hernández P, Mueller JC, Carrete M, Boerno S, Kempenaers B. Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls. Genome Biol Evol 2020; 12:1895-1908. [PMID: 32770228 PMCID: PMC7566403 DOI: 10.1093/gbe/evaa166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Owls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
5
|
Feodorova Y, Falk M, Mirny LA, Solovei I. Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals. Trends Cell Biol 2020; 30:276-289. [PMID: 31980345 DOI: 10.1016/j.tcb.2019.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
The cell nucleus is a remarkably well-organized organelle with membraneless but distinct compartments of various functions. The largest of them, euchromatin and heterochromatin, are spatially segregated in such a way that the transcriptionally active genome occupies the nuclear interior, whereas silent genomic loci are preferentially associated with the nuclear envelope. This rule is broken by rod photoreceptor cells of nocturnal mammals, in which the two major compartments have inverted positions. The inversion and dense compaction of heterochromatin converts these nuclei into microlenses that focus light and facilitate nocturnal vision. As is often the case in biology, when a mutation helps to understand normal processes and structures, inverted nuclei have served as a tool to unravel general principles of nuclear organization, including mechanisms of heterochromatin tethering to the nuclear envelope, autonomous behavior of small genomic segments, and euchromatin-heterochromatin segregation.
Collapse
Affiliation(s)
- Yana Feodorova
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany; Department of Medical Biology, Medical University-Plovdiv, Boulevard Vasil Aprilov 15A, Plovdiv 4000, Bulgaria
| | - Martin Falk
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irina Solovei
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
7
|
Vanier D, Sherwood C, Smaers J. Distinct Patterns of Hippocampal and Neocortical Evolution in Primates. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:171-181. [DOI: 10.1159/000500625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Because of the central role of the hippocampus in representing spatial and temporal details of experience, comparative studies of its volume and structure are relevant to understanding the evolution of representational memory across species. The hippocampal formation, however, is organized into separate anatomical subregions with distinct functions, and little is known about the evolutionary diversification of these subregions. We investigate relative volumetric changes in hippocampal subregions across a large sample of primate species. We then compare the evolution of the hippocampal formation to the neocortex. Results across hippocampal subregions indicate that, compared to strepsirrhines, the anthropoid lineage displays a decrease in relative CA3, fascia dentata, subiculum, and rhinal cortex volume in tandem with an increase in relative neocortical volume. These findings indicate that hippocampal function in anthropoids might be substantially augmented by the executive decision-making functions of the neocortex. Humans are found to have a unique cerebral organization combining increased relative CA3, subiculum, and rhinal cortex with increased relative neocortical volumes, suggesting that these regions may play a role in behaviors that are uniquely specialized in humans.
Collapse
|
8
|
Niimura Y, Matsui A, Touhara K. Acceleration of Olfactory Receptor Gene Loss in Primate Evolution: Possible Link to Anatomical Change in Sensory Systems and Dietary Transition. Mol Biol Evol 2019; 35:1437-1450. [PMID: 29659972 DOI: 10.1093/molbev/msy042] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primates have traditionally been regarded as vision-oriented animals with low olfactory ability, though this "microsmatic primates" view has been challenged recently. To clarify when and how degeneration of the olfactory system occurred and to specify the relevant factors during primate evolution, we here examined the olfactory receptor (OR) genes from 24 phylogenetically and ecologically diverse primate species. The results revealed that strepsirrhines with curved noses had functional OR gene repertoires that were nearly twice as large as those for haplorhines with simple noses. Neither activity pattern (nocturnal/diurnal) nor color vision system showed significant correlation with the number of functional OR genes while phylogeny and nose structure (haplorhine/strepsirrhine) are statistically controlled, but extent of folivory did. We traced the evolutionary fates of individual OR genes by identifying orthologous gene groups, demonstrating that the rates of OR gene losses were accelerated at the ancestral branch of haplorhines, which coincided with the acquisition of acute vision. The highest rate of OR gene loss was observed at the ancestral branch of leaf-eating colobines; this reduction is possibly linked with the dietary transition from frugivory to folivory because odor information is essential for fruit foraging but less so for leaf foraging. Intriguingly, we found accelerations of OR gene losses in an external branch to every hominoid species examined. These findings suggest that the current OR gene repertoire in each species has been shaped by a complex interplay of phylogeny, anatomy, and habitat; therefore, multiple factors may contribute to the olfactory degeneration in primates.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan.,Lead Contact
| | - Atsushi Matsui
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Do predators influence the behaviour of temperate-zone bats? An analysis of competing models of roost emergence times. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Nishihara H, Stanyon R, Kusumi J, Hirai H, Koga A. Evolutionary Origin of OwlRep, a Megasatellite DNA Associated with Adaptation of Owl Monkeys to Nocturnal Lifestyle. Genome Biol Evol 2018; 10:157-165. [PMID: 29294004 PMCID: PMC5765563 DOI: 10.1093/gbe/evx281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Rod cells of many nocturnal mammals have a “non-standard” nuclear architecture, which is called the inverted nuclear architecture. Heterochromatin localizes to the central region of the nucleus. This leads to an efficient light transmission to the outer segments of photoreceptors. Rod cells of diurnal mammals have the conventional nuclear architecture. Owl monkeys (genus Aotus) are the only taxon of simian primates that has a nocturnal or cathemeral lifestyle, and this adaptation is widely thought to be secondary. Their rod cells were shown to exhibit an intermediate chromatin distribution: a spherical heterochromatin block was found in the central region of the nucleus although it was less complete than that of typical nocturnal mammals. We recently demonstrated that the primary DNA component of this heterochromatin block was OwlRep, a megasatellite DNA consisting of 187-bp-long repeat units. However, the origin of OwlRep was not known. Here we show that OwlRep was derived from HSAT6, a simple repeat sequence found in the centromere regions of human chromosomes. HSAT6 occurs widely in primates, suggesting that it was already present in the last common ancestor of extant primates. Notably, Strepsirrhini and Tarsiformes apparently carry a single HSAT6 copy, whereas many species of Simiiformes contain multiple copies. Comparison of nucleotide sequences of these copies revealed the entire process of the OwlRep formation. HSAT6, with or without flanking sequences, was segmentally duplicated in New World monkeys. Then, in the owl monkey linage after its divergence from other New World monkeys, a copy of HSAT6 was tandemly amplified, eventually forming a megasatellite DNA.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
11
|
Cremer T, Cremer M, Cremer C. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context. BIOCHEMISTRY (MOSCOW) 2018; 83:313-325. [PMID: 29626919 DOI: 10.1134/s000629791804003x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.
Collapse
Affiliation(s)
- T Cremer
- Biocenter, Department of Biology II, Ludwig Maximilian University (LMU), Munich, Germany.
| | | | | |
Collapse
|
12
|
Koga A, Tanabe H, Hirai Y, Imai H, Imamura M, Oishi T, Stanyon R, Hirai H. Co-Opted Megasatellite DNA Drives Evolution of Secondary Night Vision in Azara's Owl Monkey. Genome Biol Evol 2017; 9:1963-1970. [PMID: 28810713 PMCID: PMC5553404 DOI: 10.1093/gbe/evx142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 11/12/2022] Open
Abstract
Owl monkeys (genus Aotus) are the only taxon in simian primates that consists of nocturnal or otherwise cathemeral species. Their night vision is superior to that of other monkeys, apes, and humans but not as good as that of typical nocturnal mammals. This incomplete night vision has been used to conclude that these monkeys only secondarily adapted to a nocturnal lifestyle, or to their cathemeral lifestyle that involves high night-time activity. It is known that the rod cells of many nocturnal mammals possess a unique nuclear architecture in which heterochromatin is centrally located. This "inverted nuclear architecture", in contrast with "conventional nuclear architecture", provides elevated night vision by passing light efficiently to the outer segments of photoreceptors. Owl monkey rod cells exhibit an intermediate chromatin distribution, which may provide them with less efficient night vision than other nocturnal mammals. Recently, we identified three megasatellite DNAs in the genome of Azara's owl monkey (Aotus azarae). In the present study, we show that one of the three megasatellite DNAs, OwlRep, serves as the primary component of the heterochromatin block located in the central space of the rod nucleus in A. azarae. This satellite DNA is likely to have emerged in the Aotus lineage after its divergence from those of other platyrrhini taxa and underwent a rapid expansion in the genome. Our results indicate that the heterochromatin core in the A. azarae rod nucleus was newly formed in A. azarae or its recent ancestor, and supports the hypothesis that A. azarae, and with all probability other Aotus species, secondarily acquired night vision.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Takao Oishi
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
13
|
Moritz GL, Ong PS, Perry GH, Dominy NJ. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0075. [PMID: 28193820 DOI: 10.1098/rstb.2016.0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers-which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW-confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey-background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Gillian L Moritz
- Department of Evolutionary Anthropology, Duke University, 104 Biological Sciences Building, Campus Box 90383, Durham, NC 27708, USA
| | - Perry S Ong
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, 513 Carpenter Building, University Park, PA 16802, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755, USA .,Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, 78 College Street, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat Ecol Evol 2017; 1:1889-1895. [DOI: 10.1038/s41559-017-0366-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/05/2017] [Indexed: 11/08/2022]
|
15
|
Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J Comp Neurol 2017; 527:13-37. [DOI: 10.1002/cne.24167] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Leo Peichl
- Max Planck Institute for Brain Research; Max-von-Laue-Straße 4, 60438 Frankfurt am Main Germany
- Ernst Strüngmann Institute for Neuroscience; Deutschordenstraße 46, 60528 Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany
| | - Alexander Kaiser
- Department Biology II; Ludwig-Maximilians University Munich; Großhaderner Straße 2-4, 82152 Martinsried-Planegg Germany
- Institute of Zoology; University of Veterinary Medicine Hannover; Bünteweg 17, 30559 Hannover Germany
| | - Felix Rakotondraparany
- Département de Zoologie et Biodiversité Animale; Université d’Antananarivo; BP 906, Antananarivo 101 Madagascar
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin; 2015 Linden Drive Madison Wisconsin 53706
| | - Steven M. Goodman
- The Field Museum of Natural History; 1400 South Lake Shore Drive, Chicago Illinois 60605
- Association Vahatra; BP 3972, Antananarivo 101 Madagascar
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center; Kellnerweg 4, 37077 Göttingen Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; University Göttingen; Kellnerweg 6, 37077 Göttingen Germany
| |
Collapse
|
16
|
Soligo C, Smaers JB. Contextualising primate origins--an ecomorphological framework. J Anat 2016; 228:608-29. [PMID: 26830706 PMCID: PMC4804135 DOI: 10.1111/joa.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins.
Collapse
Affiliation(s)
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
17
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
18
|
Wu J, Xiang H, Qi Y, Yang D, Wang X, Sun H, Wang F, Liu B. Adaptive evolution of the STRA6 genes in mammalian. PLoS One 2014; 9:e108388. [PMID: 25251323 PMCID: PMC4177561 DOI: 10.1371/journal.pone.0108388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
Stimulated by retinoic acid 6 (STRA6) is the receptor for retinol binding protein and is relevant for the transport of retinol to specific sites such as the eye. The adaptive evolution mechanism that vertebrates have occupied nearly every habitat available on earth and adopted various lifestyles associated with different light conditions and visual challenges, as well as their role in development and adaptation is thus far unknown. In this work, we have investigated different aspects of vertebrate STRA6 evolution and used molecular evolutionary analyses to detect evidence of vertebrate adaptation to the lightless habitat. Free-ratio model revealed significant rate shifts immediately after the species divergence. The amino acid sites detected to be under positive selection are within the extracellular loops of STRA6 protein. Branch-site model A test revealed that STRA6 has undergone positive selection in the different phyla of mammalian except for the branch of rodent. The results suggest that interactions between different light environments and host may be driving adaptive change in STRA6 by competition between species. In support of this, we found that altered functional constraints may take place at some amino acid residues after speciation. We suggest that STRA6 has undergone adaptive evolution in different branch of vertebrate relation to habitat environment.
Collapse
Affiliation(s)
- Jianghong Wu
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (JHW); (HX)
| | - Hui Xiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (JHW); (HX)
| | - Yunxia Qi
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Ding Yang
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Xiaojuan Wang
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Hailian Sun
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Feng Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Bin Liu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|