1
|
Deme GG, Liang X, Okoro JO, Bhattarai P, Sun B, Malann YD, Martin RA. Female lizards ( Eremias argus) reverse Bergmann's rule across altitude. Ecol Evol 2023; 13:e10393. [PMID: 37554397 PMCID: PMC10405246 DOI: 10.1002/ece3.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
The evolution of body size within and among species is predicted to be influenced by multifarious environmental factors. However, the specific drivers of body size variation have remained difficult to understand because of the wide range of proximate factors that covary with ectotherm body sizes across populations with varying local environmental conditions. Here, we used female Eremias argus lizards collected from different populations across their wide range in China, and constructed linear mixed models to assess how climatic conditions and/or available resources at different altitudes shape the geographical patterns of lizard body size across altitude. Lizard populations showed significant differences in body size across altitudes. Furthermore, we found that climatic and seasonal changes along the altitudinal gradient also explained variations in body size among populations. Specifically, body size decreased with colder and drier environmental conditions at high altitudes, reversing Bergmann's rule. Limited resources at high altitudes, measured by the low vegetative index, may also constrain body size. Therefore, our study demonstrates that multifarious environmental factors could strongly influence the intraspecific variation in organisms' body size.
Collapse
Affiliation(s)
- Gideon Gywa Deme
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | | | - Prakash Bhattarai
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yoila David Malann
- Department of Biological SciencesUniversity of Abuja, Federal Capital TerritoryAbujaNigeria
| | - Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Zhang L, Zhang ZR, Zheng YQ, Zhang LJ, Wang MY, Wang XT, Yuan ML. Genome-wide gene expression profiles of the pea aphid (Acyrthosiphon pisum) under cold temperatures provide insights into body color variation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21797. [PMID: 34272770 DOI: 10.1002/arch.21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Cold temperatures are one of the factors influencing color polymorphisms in Acyrthosiphon pisum, resulting in a change from a red to greenish color. Here we characterized gene expression profiles of A. pisum under different low temperatures (1°C, 4°C, 8°C, and 14°C) and durations (3, 6, 12, and 24 h). The number of differentially expressed genes (DEGs) increased as temperatures decreased and time increased, but only a small number of significant DEGs were identified. Genes involved in pigment metabolism were downregulated. An interaction network analysis for 506 common DEGs in comparisons among aphids exposed to 1°C for four durations indicated that a cytochrome P450 gene (CYP, LOC112935894) significantly downregulated may interact with a carotenoid metabolism gene (LOC100574964), similar to other genes encoding CYP, lycopene dehydrogenase and fatty acid synthase. We proposed that the body color shift in A. pisum responding to low temperatures may be regulated by CYPs.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhou-Rui Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Yong-Qiang Zheng
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Jun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Meng-Yao Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
3
|
Tregenza T, Rodríguez-Muñoz R, Boonekamp JJ, Hopwood PE, Sørensen JG, Bechsgaard J, Settepani V, Hegde V, Waldie C, May E, Peters C, Pennington Z, Leone P, Munk EM, Greenrod STE, Gosling J, Coles H, Gruffydd R, Capria L, Potter L, Bilde T. Evidence for genetic isolation and local adaptation in the field cricket Gryllus campestris. J Evol Biol 2021; 34:1624-1636. [PMID: 34378263 DOI: 10.1111/jeb.13911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | | | - Jelle J Boonekamp
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.,Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Paul E Hopwood
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Jesper Givskov Sørensen
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Vinayaka Hegde
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Callum Waldie
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emma May
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Caleb Peters
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Zinnia Pennington
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Paola Leone
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emil M Munk
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Samuel T E Greenrod
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Joe Gosling
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Harry Coles
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Rhodri Gruffydd
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Loris Capria
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Laura Potter
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Trine Bilde
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Laiolo P, Pato J, Illera JC, Obeso JR. Selection for functional performance in the evolution of cuticle hardening mechanisms in insects. Evolution 2021; 75:1132-1142. [PMID: 33634481 DOI: 10.1111/evo.14201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Calcified tissues have repeatedly evolved in many animal lineages and show a tremendous diversity of forms and functions. The cuticle of many insects is enriched with elements other than Calcium, a strategy of hardening that is taxonomically widespread but apparently poorly variable among clades. Here, we investigate the evolutionary potential of the enrichment with metals in insect cuticle at different biological levels. We combined experimental evidence of Zinc content variation in the mandibles of a target species (Chorthippus cazurroi [Bolívar]) with phylogenetic comparative analyses among grasshopper species. We found that mandibular Zinc content was repeatable among related individuals and was associated with an indicator of fitness, so there was potential for adaptive variation. Among species, Zinc enrichment evolved as a consequence of environmental and dietary influences on the physical function of the jaw (cutting and chewing), suggesting a role of natural selection in environmental fit. However, there were also important within and transgenerational environmental sources of similarity among individuals. These environmental influences, along with the tight relationship with biomechanics, may limit the potential for diversification of this hardening mechanism. This work provides novel insights into the diversification of biological structures and the link between evolutionary capacity and intra- and interspecific variation.
Collapse
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - Joaquina Pato
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| |
Collapse
|
5
|
Quinby BM, Belk MC, Creighton JC. Behavioral constraints on local adaptation and counter-gradient variation: Implications for climate change. Ecol Evol 2020; 10:6688-6701. [PMID: 32724542 PMCID: PMC7381570 DOI: 10.1002/ece3.6399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022] Open
Abstract
Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter-gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter-gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter-gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter-gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior.
Collapse
Affiliation(s)
- Brandon M. Quinby
- Department of Biological SciencesPurdue University NorthwestHammondINUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUTUSA
| | | |
Collapse
|
6
|
Illera JC, Arenas M, López-Sánchez CA, Obeso JR, Laiolo P. Gradual Distance Dispersal Shapes the Genetic Structure in an Alpine Grasshopper. Genes (Basel) 2019; 10:E590. [PMID: 31387238 PMCID: PMC6724060 DOI: 10.3390/genes10080590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
The location of the high mountains of southern Europe has been crucial in the phylogeography of most European species, but how extrinsic (topography of sky islands) and intrinsic features (dispersal dynamics) have interacted to shape the genetic structure in alpine restricted species is still poorly known. Here we investigated the mechanisms explaining the colonisation of Cantabrian sky islands in an endemic flightless grasshopper. We scrutinised the maternal genetic variability and haplotype structure, and we evaluated the fitting of two migration models to understand the extant genetic structure in these populations: Long-distance dispersal (LDD) and gradual distance dispersal (GDD). We found that GDD fits the real data better than the LDD model, with an onset of the expansion matching postglacial expansions after the retreat of the ice sheets. Our findings suggest a scenario with small carrying capacity, migration rates, and population growth rates, being compatible with a slow dispersal process. The gradual expansion process along the Cantabrian sky islands found here seems to be conditioned by the suitability of habitats and the presence of alpine corridors. Our findings shed light on our understanding about how organisms which have adapted to live in alpine habitats with limited dispersal abilities have faced new and suitable environmental conditions.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| | - Carlos A López-Sánchez
- Department of Biology, Organisms and Systems, GIS-Forest Group, Oviedo University, 33600 Mieres, Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| | - Paola Laiolo
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| |
Collapse
|
7
|
Laiolo P, Pato J, Obeso JR. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecol Lett 2018; 21:1022-1032. [DOI: 10.1111/ele.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 03/21/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| | - Joaquina Pato
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| |
Collapse
|
8
|
Lombardo JA, Elkinton JS. Environmental adaptation in an asexual invasive insect. Ecol Evol 2017; 7:5123-5130. [PMID: 28770052 PMCID: PMC5528223 DOI: 10.1002/ece3.2894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/14/2022] Open
Abstract
Parthenogenetic reproduction is generally associated with low genetic variance and therefore reduced ability for environmental adaptation, and this could limit the potential invasiveness of introduced species that reproduce asexually. However, the hemlock woolly adelgid is an asexual invasive insect that has spread across a large geographic temperature gradient in its introduced range. Consequently, this insect has shown significant variation in cold hardiness among populations. We hypothesized that the increased cold hardiness of northern populations represents an adaptation to the colder temperatures. To test this, we collected individual adelgid from populations spanning their invaded range and inoculated them into a common thermal environment. We then experimentally sampled the supercooling point of the progeny of these adelgids and compared these results with tests of the supercooling point of adelgid sampled directly from their source populations. The results showed that the same significant differences in supercooling that was found among geographically distinct populations existed even when the adelgid was reared in a common environment, indicating a genetic basis for the variation in cold hardiness. These findings support the hypothesis that the adelgid has adapted to the colder environment as it has expanded its distribution in its invaded range.
Collapse
Affiliation(s)
- Jeffrey A. Lombardo
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| | - Joseph S. Elkinton
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
9
|
Bastianelli G, Tavecchia G, Meléndez L, Seoane J, Obeso JR, Laiolo P. Surviving at high elevations: an inter- and intra-specific analysis in a mountain bird community. Oecologia 2017; 184:293-303. [DOI: 10.1007/s00442-017-3852-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
10
|
Life-History Responses to the Altitudinal Gradient. HIGH MOUNTAIN CONSERVATION IN A CHANGING WORLD 2017. [DOI: 10.1007/978-3-319-55982-7_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Noguerales V, García-Navas V, Cordero PJ, Ortego J. The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper. J Evol Biol 2016; 29:2129-2142. [DOI: 10.1111/jeb.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- V. Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - V. García-Navas
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| | - P. J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - J. Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Sevilla Spain
| |
Collapse
|
12
|
Laiolo P, Seoane J, Illera JC, Bastianelli G, Carrascal LM, Obeso JR. The evolutionary convergence of avian lifestyles and their constrained coevolution with species' ecological niche. Proc Biol Sci 2015; 282:20151808. [PMID: 26674945 PMCID: PMC4707745 DOI: 10.1098/rspb.2015.1808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/12/2015] [Indexed: 11/12/2022] Open
Abstract
The fit between life histories and ecological niche is a paradigm of phenotypic evolution, also widely used to explain patterns of species co-occurrence. By analysing the lifestyles of a sympatric avian assemblage, we show that species' solutions to environmental problems are not unbound. We identify a life-history continuum structured on the cost of reproduction along a temperature gradient, as well as habitat-driven parental behaviour. However, environmental fit and trait convergence are limited by niche filling and by within-species variability of niche traits, which is greater than variability of life histories. Phylogeny, allometry and trade-offs are other important constraints: lifetime reproductive investment is tightly bound to body size, and the optimal allocation to reproduction for a given size is not established by niche characteristics but by trade-offs with survival. Life histories thus keep pace with habitat and climate, but under the limitations imposed by metabolism, trade-offs among traits and species' realized niche.
Collapse
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA), Universidad de Oviedo, 33600 Mieres, Spain Department of Life Sciences and Systems Biology, Universitá di Torino, 10123 Torino, Italy
| | - Javier Seoane
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO, CSIC, PA), Universidad de Oviedo, 33600 Mieres, Spain
| | - Giulia Bastianelli
- Research Unit of Biodiversity (UO, CSIC, PA), Universidad de Oviedo, 33600 Mieres, Spain
| | | | - José Ramón Obeso
- Research Unit of Biodiversity (UO, CSIC, PA), Universidad de Oviedo, 33600 Mieres, Spain
| |
Collapse
|