1
|
Barton SA, Kent M, Hecht EE. Covariation of Skull and Brain Morphology in Domestic Dogs. J Comp Neurol 2024; 532:e25668. [PMID: 39268838 DOI: 10.1002/cne.25668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Despite their distinct embryonic origins, the skull and brain are highly integrated. Understanding the covariation between the skull and brain can shed light on anatomical, cognitive, and behavioral traits in extant and extinct species. Domestic dogs offer a unique opportunity to investigate skull-brain covariation due to their diverse skull morphologies and neural anatomy. To assess this question, we examined T2-weighted MRI studies of 62 dogs from 33 breeds, plus an additional 17 dogs of mixed or unknown breeds. Scans were opportunistically collected from a veterinary teaching hospital of dogs that were referred for neurological examination but did not have grossly observable structural brain abnormalities. As the neurocrania of dogs become broader and shorter, there is a significant decrease in the gray matter volume of the right olfactory bulb, frontal cortex, marginal gyrus, and cerebellum. On the other hand, as the neurocrania of dogs become narrower and longer, there is a significant decrease in the gray matter volume of the olfactory bulb, frontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, periaqueductal gray, cerebellum, and brainstem. Selective breeding for specific skull shapes may impact canine brain anatomy and function.
Collapse
Affiliation(s)
- Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Marc Kent
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Costes P, Klein E, Delapré A, Houssin C, Nicolas V, Cornette R. Comparative morpho-functional analysis of the humerus and ulna in three Western European moles species of the genus Talpa, including the newly described T. aquitania. J Anat 2022; 242:257-276. [PMID: 36156797 PMCID: PMC9877487 DOI: 10.1111/joa.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023] Open
Abstract
The forelimb is involved in many behaviours including locomotion. Notably, the humero-ulnar articulation, implicated in the elbow joint, is of particular importance for both mobility and stability. Functional constraints, induced in part by environmental plasticity, are thought to drive an important part of the bone shape as bone directly responds and remodels in response to both muscle and external forces. In this context, the study of subterranean moles is of particular interest. These moles occupy a hard and heavy medium in comparison with air or water, requiring a powerful body structure to shear and shift the soil. Their general morphology is therefore adapted to digging and to their subterranean lifestyle. The various morpho-functional patterns, which drive diverse abilities according to the environment, are likely targets of natural selection and it is, therefore, useful to understand the relationships between the bone shape and their function. Here, we quantify, through 3D geometric morphometric methods, the interspecific variability in the morphology of the ulna and humerus of three Talpa species, including the new species Talpa aquitania, to infer their potential consequence in species digging performance. We also quantify shape covariation and morphological integration between the humerus and the ulna to test whether these bones evolve as a uniform functional unit or as more or less independent modules. Our results show that interspecific anatomical differences in the humerus and ulna exist among the three species. Shape changes are mostly located at the level of joints and muscle attachments. As the species tend to live in allopatry and the fossorial lifestyle induces strong ecological constraints, interspecific variations could be explained by the properties of the environment in which they live, such as the compactness of the soil. Our results also show that the humerus and ulna are highly integrated. The covariation between the humerus and ulna in moles is dominated by variation in the attachment areas and particularly of the attachment areas of shoulder muscles concerning the humerus, which affect the mechanical force deployed during locomotion and digging. This study also highlights that in the new species, T. aquitania, variations in anatomical structure (general shape and joints) exist and are related to the locality of collect of the individuals.
Collapse
Affiliation(s)
- Pauline Costes
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance,Mecanismes Adaptatifs et Évolution UMR 7179, CNRSMuséum National d'Histoire NaturelleParisFrance
| | - Estelle Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Arnaud Delapré
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB)UMR 7205, Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UAParisFrance
| |
Collapse
|
3
|
Brassard C, Bălăşescu A, Arbogast RM, Forest V, Bemilli C, Boroneanţ A, Convertini F, Gandelin M, Radu V, Fleming PA, Guintard C, Kreplins TL, Callou C, Filippo A, Tresset A, Cornette R, Herrel A, Bréhard S. Unexpected morphological diversity in ancient dogs compared to modern relatives. Proc Biol Sci 2022; 289:20220147. [PMID: 35582797 PMCID: PMC9115036 DOI: 10.1098/rspb.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dogs are among the most variable species today, but little is known about the morphological variability in the early phases of their history. The Neolithic transition to farming may have resulted in an early morphological diversification as a result of changes in the anthropic environment or intentional selection on specific morphologies. Here, we describe the variability and modularity in mandible form by comparing 525 dog mandibles from European archaeological sites ranging from 8100 to 3000 cal. BC to a reference sample of modern dogs, wolves, and dingoes. We use three-dimensional geometric morphometrics to quantify the form of complete and fragmented mandibles. We demonstrate that an important morphological variability already existed before the Bronze Age in Europe, yet the largest, smallest, most brachycephalic or dolichocephalic extant dogs have no equivalent in the archaeological sample, resulting in a lower variation compared to modern relatives. The covariation between the anterior and posterior parts of the mandible is lower in archaeological dogs, suggesting a low degree of intentional human selection in early periods. The mandible of modern and ancient dogs differs in functionally important areas, possibly reflecting differences in diet, competition, or the implication of ancient dogs in hunting or defence.
Collapse
Affiliation(s)
- Colline Brassard
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France,MECADEV-UMR 7179, Muséum national d'Histoire naturelle, Paris, France
| | - Adrian Bălăşescu
- Vasile Pârvan Institute of Archaeology, Romanian Academy, Bucharest, Romania
| | | | - Vianney Forest
- Institut National de Recherches Archéologiques Préventives (INRAP) Midi-Méditerranée, 30900 Nîmes, France,TRACES-UMR 5608, Université Toulouse - Jean-Jaurès, Toulouse, France
| | - Céline Bemilli
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France,Institut National de Recherches Archéologiques Préventives (INRAP) Île de France, Le Grand Quevillys, France
| | - Adina Boroneanţ
- Vasile Pârvan Institute of Archaeology, Romanian Academy, Bucharest, Romania
| | - Fabien Convertini
- Institut National de Recherches Archéologiques Préventives (INRAP) Midi-Méditerranée, 30900 Nîmes, France,ASM-UMR 5140, Montpellier, France
| | - Muriel Gandelin
- Institut National de Recherches Archéologiques Préventives (INRAP) Midi-Méditerranée, 30900 Nîmes, France,TRACES-UMR 5608, Université Toulouse - Jean-Jaurès, Toulouse, France
| | - Valentin Radu
- National Museum of Romanian History, Bucharest, Romania
| | - Patricia A. Fleming
- Environmental and Conservation Sciences, Harry Butler Research Centre, Murdoch University, Murdoch, Western Australia, Australia
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes, France,GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, France
| | - Tracey L. Kreplins
- Environmental and Conservation Sciences, Harry Butler Research Centre, Murdoch University, Murdoch, Western Australia, Australia
| | - Cécile Callou
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France
| | - Andréa Filippo
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France
| | - Anne Tresset
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- ISYEB-UMR7205, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Anthony Herrel
- MECADEV-UMR 7179, Muséum national d'Histoire naturelle, Paris, France
| | - Stéphanie Bréhard
- AASPE-UMR 7209, CNRS-Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
4
|
Hanot P, Bayarsaikhan J, Guintard C, Haruda A, Mijiddorj E, Schafberg R, Taylor W. Cranial shape diversification in horses: variation and covariation patterns under the impact of artificial selection. BMC Ecol Evol 2021; 21:178. [PMID: 34548035 PMCID: PMC8456661 DOI: 10.1186/s12862-021-01907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
The potential of artificial selection to dramatically impact phenotypic diversity is well known. Large-scale morphological changes in domestic species, emerging over short timescales, offer an accelerated perspective on evolutionary processes. The domestic horse (Equus caballus) provides a striking example of rapid evolution, with major changes in morphology and size likely stemming from artificial selection. However, the microevolutionary mechanisms allowing to generate this variation in a short time interval remain little known. Here, we use 3D geometric morphometrics to quantify skull morphological diversity in the horse, and investigate modularity and integration patterns to understand how morphological associations contribute to cranial evolvability in this taxon. We find that changes in the magnitude of cranial integration contribute to the diversification of the skull morphology in horse breeds. Our results demonstrate that a conserved pattern of modularity does not constrain large-scale morphological variations in horses and that artificial selection has impacted mechanisms underlying phenotypic diversity to facilitate rapid shape changes. More broadly, this study demonstrates that studying microevolutionary processes in domestic species produces important insights into extant phenotypic diversity.
Collapse
Affiliation(s)
- Pauline Hanot
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany.
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany.,National Museum of Mongolia, 1 Juulchin Street, Ulaanbaatar, 15160, Mongolia
| | - Claude Guintard
- Unité d'Anatomie Comparée, Ecole Nationale Vétérinaire de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique - ONIRIS, Route de Gachet, CS 40706, 44307, Nantes Cedex 03, France.,Groupe d'Etudes Remodelage osseux et bioMateriaux (GEROM), Unité INSERM 922 LHEA/IRIS-IBS, Université d'Angers, 4 rue Larrey CHU d'Angers, Angers, France
| | - Ashleigh Haruda
- Central Natural Science Collections (ZNS), Martin-Luther University Halle-Wittenberg, Domplatz 4, 06108, Halle (Saale), Germany.,School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, UK
| | - Enkhbayar Mijiddorj
- Department of Archaeology, Ulaanbaatar State University, Luvsantseveen Street, 5th Khoroo, 15th Khoroolol, Bayanzurkh District, Ulaanbaatar, 13343, Mongolia
| | - Renate Schafberg
- Central Natural Science Collections (ZNS), Martin-Luther University Halle-Wittenberg, Domplatz 4, 06108, Halle (Saale), Germany
| | - William Taylor
- University of Colorado-Boulder, Museum of Natural History, Boulder, CO, USA
| |
Collapse
|
5
|
Wilson LAB, Balcarcel A, Geiger M, Heck L, Sánchez‐Villagra MR. Modularity patterns in mammalian domestication: Assessing developmental hypotheses for diversification. Evol Lett 2021; 5:385-396. [PMID: 34367663 PMCID: PMC8327948 DOI: 10.1002/evl3.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The neural crest hypothesis posits that selection for tameness resulted in mild alterations to neural crest cells during embryonic development, which directly or indirectly caused the appearance of traits associated with the "domestication syndrome" (DS). Although representing an appealing unitary explanation for the generation of domestic phenotypes, support for this hypothesis from morphological data and for the validity of the DS remains a topic of debate. This study used the frameworks of morphological integration and modularity to assess patterns that concern the embryonic origin of the skull and issues around the neural crest hypothesis. Geometric morphometric landmarks were used to quantify cranial trait interactions between six pairs of wild and domestic mammals, comprising representatives that express between five and 17 of the traits included in the DS, and examples from each of the pathways by which animals entered into relationships with humans. We predicted the presence of neural crest vs mesoderm modular structure to the cranium, and that elements in the neural crest module would show lower magnitudes of integration and higher disparity in domestic forms compared to wild forms. Our findings support modular structuring based on tissue origin (neural crest, mesoderm) modules, along with low module integration magnitudes for neural crest cell derived cranial elements, suggesting differential capacity for evolutionary response among those elements. Covariation between the neural crest and mesoderm modules accounted for major components of shape variation for most domestic/wild pairs. Contra to our predictions, however, we find domesticates share similar integration magnitudes to their wild progenitors, indicating that higher disparity in domesticates is not associated with magnitude changes to integration among either neural crest or mesoderm derived elements. Differences in integration magnitude among neural crest and mesoderm elements across species suggest that developmental evolution preserves a framework that promotes flexibility under the selection regimes of domestication.
Collapse
Affiliation(s)
- Laura A. B. Wilson
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
- School of Archaeology and AnthropologyThe Australian National UniversityCanberraAustralia
| | - Ana Balcarcel
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - Madeleine Geiger
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - Laura Heck
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
6
|
Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R, Houssin C, Callou C, Cornette R, Herrel A. Masticatory system integration in a commensal canid: interrelationships between bones, muscles and bite force in the red fox. J Exp Biol 2021; 224:jeb.224394. [DOI: 10.1242/jeb.224394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT
The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
- Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Elodie Monchâtre-Leroy
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes Cedex 03, France
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Hélène Garès
- Direction des Services Vétérinaires – D.D.C.S.P.P. de la Dordogne, 24000 Périgueux, France
| | | | - Raymond Triquet
- Université de Lille III, Domaine Universitaire du Pont de Bois BP 60149, Villeneuve d'ascq Cedex 59653, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| |
Collapse
|