1
|
|
2
|
Zwart H. Scientific iconoclasm and active imagination: synthetic cells as techno-scientific mandalas. LIFE SCIENCES, SOCIETY AND POLICY 2018; 14:10. [PMID: 29761363 PMCID: PMC5950845 DOI: 10.1186/s40504-018-0075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Metaphors allow us to come to terms with abstract and complex information, by comparing it to something which is structured, familiar and concrete. Although modern science is "iconoclastic", as Gaston Bachelard phrases it (i.e. bent on replacing living entities by symbolic data: e.g. biochemical and mathematical symbols and codes), scientists are at the same time prolific producers of metaphoric images themselves. Synthetic biology is an outstanding example of a technoscientific discourse replete with metaphors, including textual metaphors such as the "Morse code" of life, the "barcode" of life and the "book" of life. This paper focuses on a different type of metaphor, however, namely on the archetypal metaphor of the mandala as a symbol of restored unity and wholeness. Notably, mandala images emerge in textual materials (papers, posters, PowerPoints, etc.) related to one of the new "frontiers" of contemporary technoscience, namely the building of a synthetic cell: a laboratory artefact that functions like a cell and is even able to replicate itself. The mandala symbol suggests that, after living systems have been successfully reduced to the elementary building blocks and barcodes of life, the time has now come to put these fragments together again. We can only claim to understand life, synthetic cell experts argue, if we are able to technically reproduce a fully functioning cell. This holistic turn towards the cell as a meaningful whole (a total work of techno-art) also requires convergence at the "subject pole": the building of a synthetic cell as a practice of the self, representing a turn towards integration, of multiple perspectives and various forms of expertise.
Collapse
Affiliation(s)
- Hub Zwart
- Department of Philosophy and Science Studies (Chair), Faculty of Science, Institute for Science in Society (ISIS), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Van Regenmortel MHV. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design. Front Immunol 2018; 8:2009. [PMID: 29387066 PMCID: PMC5776009 DOI: 10.3389/fimmu.2017.02009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems.
Collapse
|
4
|
Rivas AL, Leitner G, Jankowski MD, Hoogesteijn AL, Iandiorio MJ, Chatzipanagiotou S, Ioannidis A, Blum SE, Piccinini R, Antoniades A, Fazio JC, Apidianakis Y, Fair JM, Van Regenmortel MHV. Nature and Consequences of Biological Reductionism for the Immunological Study of Infectious Diseases. Front Immunol 2017; 8:612. [PMID: 28620378 PMCID: PMC5449438 DOI: 10.3389/fimmu.2017.00612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
Evolution has conserved "economic" systems that perform many functions, faster or better, with less. For example, three to five leukocyte types protect from thousands of pathogens. To achieve so much with so little, biological systems combine their limited elements, creating complex structures. Yet, the prevalent research paradigm is reductionist. Focusing on infectious diseases, reductionist and non-reductionist views are here described. The literature indicates that reductionism is associated with information loss and errors, while non-reductionist operations can extract more information from the same data. When designed to capture one-to-many/many-to-one interactions-including the use of arrows that connect pairs of consecutive observations-non-reductionist (spatial-temporal) constructs eliminate data variability from all dimensions, except along one line, while arrows describe the directionality of temporal changes that occur along the line. To validate the patterns detected by non-reductionist operations, reductionist procedures are needed. Integrated (non-reductionist and reductionist) methods can (i) distinguish data subsets that differ immunologically and statistically; (ii) differentiate false-negative from -positive errors; (iii) discriminate disease stages; (iv) capture in vivo, multilevel interactions that consider the patient, the microbe, and antibiotic-mediated responses; and (v) assess dynamics. Integrated methods provide repeatable and biologically interpretable information.
Collapse
Affiliation(s)
- Ariel L. Rivas
- Center for Global Health, Division of Infectious Diseases, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Gabriel Leitner
- National Mastitis Center, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Mark D. Jankowski
- Environmental Assessment, U.S. Environmental Protection Agency, Seattle, WA, United States
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Almira L. Hoogesteijn
- Human Ecology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, México
| | - Michelle J. Iandiorio
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Stylianos Chatzipanagiotou
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Shlomo E. Blum
- National Mastitis Center, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Renata Piccinini
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Athos Antoniades
- Department of Computer Science, University of Cyprus, Nicosia, Cyprus
| | - Jane C. Fazio
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | | | - Jeanne M. Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM, United States
| | - Marc H. V. Van Regenmortel
- School of Biotechnology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Darrason M. Mechanistic and topological explanations in medicine: the case of medical genetics and network medicine. SYNTHESE 2015; 195:147-173. [PMID: 32214509 PMCID: PMC7089272 DOI: 10.1007/s11229-015-0983-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/28/2015] [Indexed: 06/10/2023]
Abstract
Medical explanations have often been thought on the model of biological ones and are frequently defined as mechanistic explanations of a biological dysfunction. In this paper, I argue that topological explanations, which have been described in ecology or in cognitive sciences, can also be found in medicine and I discuss the relationships between mechanistic and topological explanations in medicine, through the example of network medicine and medical genetics. Network medicine is a recent discipline that relies on the analysis of various disease networks (including disease-gene networks) in order to find organizing principles in disease explanation. My aim is to show how topological explanations in network medicine can help solving the conceptual issues that pure mechanistic explanations of the genetics of disease are currently facing, namely the crisis of the concept of genetic disease, the progressive geneticization of diseases and the dissolution of the distinction between monogenic and polygenic diseases. However, I will also argue that topological explanations should not be considered as independent and radically different from mechanistic explanations for at least two reasons. First, in network medicine, topological explanations depend on and use mechanistic information. Second, they leave out some missing gaps in disease explanation that require, in turn, the development of new mechanistic explanations. Finally, I will insist on the specific contribution of topological explanations in medicine: they push us to develop an explanation of disease in general, instead of focusing on single explanations of individual diseases. This last point may have major consequences for biomedical research.
Collapse
Affiliation(s)
- Marie Darrason
- Institut d’Histoire et de Philosophie des Sciences et des Techniques (IHPST - CNRS / Université Paris 1 Panthéon Sorbonne / ENS), 13 rue du Four, 75006 Paris, France
| |
Collapse
|
6
|
Mazzocchi F. Complexity and the reductionism-holism debate in systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:413-27. [PMID: 22761024 DOI: 10.1002/wsbm.1181] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reductionism has largely influenced the development of science, culminating in its application to molecular biology. An increasing number of novel research findings have, however, shattered this view, showing how the molecular-reductionist approach cannot entirely handle the complexity of biological systems. Within this framework, the advent of systems biology as a new and more integrative field of research is described, along with the form which has taken on the debate of reductionism versus holism. Such an issue occupies a central position in systems biology, and nonetheless it is not always clearly delineated. This partly occurs because different dimensions (ontological, epistemological, methodological) are involved, and yet the concerned ones often remain unspecified. Besides, within systems biology different streams can be distinguished depending on the degree of commitment to embrace genuine systemic principles. Some useful insights into the future development of this discipline might be gained from the tradition of complexity and self-organization. This is especially true with regards the idea of self-reference, which incorporated into the organizational scheme is able to generate autonomy as an emergent property of the biological whole.
Collapse
|
7
|
Selvarajoo K, Giuliani A. Finding Self-organization from the Dynamic Gene Expressions of Innate Immune Responses. Front Physiol 2012; 3:192. [PMID: 22701431 PMCID: PMC3371675 DOI: 10.3389/fphys.2012.00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University Tsuruoka, Yamagata, Japan
| | | |
Collapse
|
8
|
Bizzarri M, Giuliani A, Cucina A, D'Anselmi F, Soto AM, Sonnenschein C. Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 2011; 21:175-82. [PMID: 21514387 PMCID: PMC3148285 DOI: 10.1016/j.semcancer.2011.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
Cancer is a highly complex disease due to the disruption of tissue architecture. Thus, tissues, and not individual cells, are the proper level of observation for the study of carcinogenesis. This paradigm shift from a reductionist approach to a systems biology approach is long overdue. Indeed, cell phenotypes are emergent modes arising through collective non-linear interactions among different cellular and microenvironmental components, generally described by "phase space diagrams", where stable states (attractors) are embedded into a landscape model. Within this framework, cell states and cell transitions are generally conceived as mainly specified by gene-regulatory networks. However, the system's dynamics is not reducible to the integrated functioning of the genome-proteome network alone; the epithelia-stroma interacting system must be taken into consideration in order to give a more comprehensive picture. Given that cell shape represents the spatial geometric configuration acquired as a result of the integrated set of cellular and environmental cues, we posit that fractal-shape parameters represent "omics" descriptors of the epithelium-stroma system. Within this framework, function appears to follow form, and not the other way around.
Collapse
|
9
|
Gatherer D. So what do we really mean when we say that systems biology is holistic? BMC SYSTEMS BIOLOGY 2010; 4:22. [PMID: 20226033 PMCID: PMC2850881 DOI: 10.1186/1752-0509-4-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 03/12/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. RESULTS Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. CONCLUSIONS Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners.
Collapse
Affiliation(s)
- Derek Gatherer
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
10
|
Giuliani A. Collective motions and specific effectors: a statistical mechanics perspective on biological regulation. BMC Genomics 2010; 11 Suppl 1:S2. [PMID: 20158873 PMCID: PMC2822530 DOI: 10.1186/1471-2164-11-s1-s2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The interaction of a multiplicity of scales in both time and space is a fundamental feature of biological systems. The complementation of macroscopic (entire organism) and microscopic (molecular biology) views with a mesoscopic level of analysis able to connect the different planes of investigation is urgently needed. This will allow to both obtain a general frame of reference for rationalizing the burden of data coming from high throughput technologies and to derive effective operational views on biological systems. RESULTS The network paradigm in which microscopic level elements (nodes) are each other related by functional links so giving rise to both global (entire network) and local (specific) behavior is a promising metaphor to try and develop a statistical mechanics inspired approach for biological systems. Here we show the application of this paradigm to different systems going from yeast metabolism to murine macrophages response to immune stimulation. CONCLUSIONS The need to complement the purely molecular view with mesoscopic approaches is evident in all the studied examples that in turn demonstrate the untenability of the simple ergodic approach dominant in molecular biology in which the data coming from huge ensemble of cells are considered as relative to a single 'average' cell.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy.
| |
Collapse
|
11
|
Abstract
The term health is commonplace in both everyday parlance and professional discourse. Unfortunately, the term has little objective specification, especially in physiologic terms. When critically examined, even time-honored terms such as homeostasis lack specific measurable referents. The last three decades, however, have witnessed an explosion of information from diverse fields regarding the dynamical basis of biology. This brief review explores a few main ideas, which appear to be coming together to provide biosignatures of health.
Collapse
Affiliation(s)
- Joseph P Zbilut
- Adult Health Nursing, College of Nursing, and Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois, USA
| |
Collapse
|