1
|
Etzel L, Apsley AT, Hastings WJ, Ye Q, Shalev I. Early life adversity is associated with differential gene expression in immune cells: A cluster-based analysis across an acute psychosocial stressor. Brain Behav Immun 2024; 119:724-733. [PMID: 38663776 PMCID: PMC11190835 DOI: 10.1016/j.bbi.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Elucidating mechanisms by which early-life adversity (ELA) contributes to increased disease risk is important for mitigating adverse health outcomes. Prior work has found differences in immune cell gene expression related to inflammation and mitochondrial activity. Using a within-person between-group experimental design, we investigated differences in gene expression clusters across acute psychosocial stress and no-stress conditions. Participants were young adults (N = 29, aged 18 - 25 years, 62 % female, 47 % with a history of ELA). Gene expression was assessed in peripheral blood mononuclear cells collected at 8 blood draws spanning two 5-hour sessions (stress vs. no-stress) separated by a week, 4 across each session (number of observations = 221). We applied two unsupervised gene clustering methods - latent profile analysis (LPA) and weighted gene co-expression analysis (WGCNA) - to cluster genes with similar expression patterns across participants. LPA identified 11 clusters, 7 of which were significantly associated with ELA-status. WGCNA identified 5 clusters, 3 of which were significantly associated with ELA-status. LPA- and WGCNA-identified clusters were correlated, and all clusters were highly preserved across sessions and time. There was no significant effect of acute stress on cluster gene expression, but there was a significant effect of time, and significant differences by ELA-status. ELA-associated clusters related to RNA splicing/processing, inflammation, leukocyte differentiation and division, and mitochondrial activity were differentially expressed across time: ELA-exposed individuals showed decreased expression of these clusters at 90-minutes while controls showed increased expression. Our findings replicate previous work in this area and highlight additional mechanisms by which ELA may contribute to disease risk.
Collapse
Affiliation(s)
- Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA; Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Gao S, Zheng H, Xu S, Kong J, Gao F, Wang Z, Li Y, Dai Z, Jiang X, Ding X, Lei H. Novel Natural Carrier-Free Self-Assembled Nanoparticles for Treatment of Ulcerative Colitis by Balancing Immune Microenvironment and Intestinal Barrier. Adv Healthc Mater 2023; 12:e2301826. [PMID: 37681364 DOI: 10.1002/adhm.202301826] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory illness affecting the colon and rectum, with current treatment methods being unable to meet the clinical needs of ulcerative colitis patients. Although nanomedicines are recognized as promising anti-inflammatory medicines, their clinical application is limited by their high cost and unpredictable safety risks. This study reveals that two natural phytochemicals, berberine (BBR) and hesperetin (HST), self-assemble directly to form binary carrier-free multi-functional spherical nanoparticles (BBR-HST NPs) through noncovalent bonds involving electrostatic interactions, π-π stacking, and hydrogen bonding. Because of their synergistic anti-inflammatory activity, berberine-hesperetin nanoparticles (BBR-HST NPs) exhibit significantly better therapeutic effects on UC and inhibitory effects on inflammation than BBR and HST at the same dose by regulating the immune microenvironment and repairing the damaged intestinal barrier. Furthermore, BBR-HST NPs exhibit good biocompatibility and biosafety. Thus, this study proves the potential of novel natural anti-inflammatory nanoparticles as therapeutic agents for UC, which could promote the progress of drug development for UC and eventually benefit patients who suffering from it.
Collapse
Affiliation(s)
- Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shujing Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinqi Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
3
|
Sandamalika WMG, Liyanage DS, Lim C, Yang H, Lee S, Jeong T, Wan Q, Lee J. Differential gene expression of red-spotted grouper (Epinephelus akaara) in response to lipopolysaccharide, poly I:C, and nervous necrosis virus revealed by RNA-seq data. FISH & SHELLFISH IMMUNOLOGY 2022; 131:939-944. [PMID: 36356858 DOI: 10.1016/j.fsi.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Red-spotted grouper (Epinephelus akaara) is a popular aquaculture species with high commercial value in the food industry. However, some infectious diseases may cause mass mortality in cultural practice. Therefore, it is important to understand the immune responses of red-spotted groupers upon pathogenic invasion to develop successful disease prevention mechanisms. Here, we analyzed the transcriptomic profiles of red-spotted grouper head kidney stimulated with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) and identified differentially expressed genes (DEGs) using RNA-sequencing technology. Cluster analysis of the identified DEGs showed DEG distribution in nine separate clusters based on their expression patterns. However, significant upregulation of most DEGs was observed 6 h after poly I:C stimulation. The DEGs were functionally annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, which revealed significant expression of many immune-related signaling pathways, including antiviral, protein translation, cellular protein catabolic process, inflammatory responses, DNA repair, and cell division. Furthermore, selected DEGs were validated by quantitative real-time PCR, confirming the reliability of our findings. Collectively, this study provides insight into the immune responses of red-spotted groupers, thereby expanding the understanding of fish immunity.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
4
|
Alag A. Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity. PLoS One 2019; 14:e0218253. [PMID: 31216310 PMCID: PMC6584060 DOI: 10.1371/journal.pone.0218253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current laboratory tests are less than 50% accurate in distinguishing between people who have food allergies (FA) and those who are merely sensitized to foods, resulting in the use of expensive and potentially dangerous Oral Food Challenges. This study presents a purely-computational machine learning approach, conducted using DNA Methylation (DNAm) data, to accurately diagnose food allergies and potentially find epigenetic targets for the disease. METHODS AND RESULTS An unbiased feature-selection pipeline was created that narrowed down 405,000+ potential CpG biomarkers to 18. Machine-learning models that utilized subsets of this 18-feature aggregate achieved perfect classification accuracy on completely hidden test cohorts (on an 8-fold hidden dataset). Ensemble classification was also shown to be effective for this High Dimension Low Sample Size (HDLSS) DNA methylation dataset. The efficacy of these machine learning classifiers and the 18 CpGs was further validated by their high accuracy on a large number of hidden data permutations, where the samples in the training, cross-validation, and hidden sets were repeatedly randomly allocated. The 18-CpG signature mapped to 13 genes, on which biological insights were collected. Notably, many of the FA-discriminating genes found in this study were strongly associated with the immune system, and seven of the 13 genes were previously associated with FA. CONCLUSIONS Previous studies have also created highly-accurate classifiers for this dataset, using both data-driven and a priori biological insights to construct a 96-CpG signature. This research builds on previous work because it uses a completely computational approach to obtain a perfect classification accuracy while using only 18 highly discriminating CpGs (0.005% of the total available features). In machine learning, simpler models, as used in this study, are generally preferred over more complex ones (other things being equal). Lastly, the completely data-driven methodology presented in this research eliminates the need for a priori biological information and allows for generalizability to other DNAm classification problems.
Collapse
Affiliation(s)
- Ayush Alag
- The Harker School, San Jose, CA, United States of America
| |
Collapse
|
5
|
Uren Webster TM, Rodriguez-Barreto D, Martin SA, Van Oosterhout C, Orozco-terWengel P, Cable J, Hamilton A, Garcia De Leaniz C, Consuegra S. Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon. Epigenetics 2018; 13:1191-1207. [PMID: 30526303 PMCID: PMC6986783 DOI: 10.1080/15592294.2018.1554520] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stress experienced during early life may have lasting effects on the immune system, with impacts on health and disease dependent on the nature and duration of the stressor. The epigenome is especially sensitive to environmental stimuli during early life and represents a potential mechanism through which stress may cause long-lasting health effects. However, the extent to which the epigenome responds differently to chronic vs acute stressors is unclear, especially for non-mammalian species. We examined the effects of acute stress (cold-shock during embryogenesis) and chronic stress (absence of tank enrichment during larval-stage) on global gene expression (using RNA-seq) and DNA methylation (using RRBS) in the gills of Atlantic salmon (Salmo salar) four months after hatching. Chronic stress induced pronounced transcriptional differences, while acute stress caused few lasting transcriptional effects. However, both acute and chronic stress caused lasting and contrasting changes in the methylome. Crucially, we found that acute stress enhanced transcriptional immune response to a pathogenic challenge (bacterial lipopolysaccharide, LPS), while chronic stress suppressed it. We identified stress-induced changes in promoter and gene-body methylation that were associated with altered expression for a small proportion of immune-related genes, and evidence of wider epigenetic regulation within signalling pathways involved in immune response. Our results suggest that stress can affect immuno-competence through epigenetic mechanisms, and highlight the markedly different effects of chronic larval and acute embryonic stress. This knowledge could be used to harness the stimulatory effects of acute stress on immunity, paving the way for improved stress and disease management through epigenetic conditioning.
Collapse
Affiliation(s)
- Tamsyn M. Uren Webster
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| | | | | | | | | | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd, Stirling University Innovation Park, Stirling, UK
| | - Carlos Garcia De Leaniz
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| | - Sofia Consuegra
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Peña-González CE, Pedziwiatr-Werbicka E, Shcharbin D, Guerrero-Beltrán C, Abashkin V, Loznikova S, Jiménez JL, Muñoz-Fernández MÁ, Bryszewska M, Gómez R, Sánchez-Nieves J, de la Mata FJ. Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Trans 2018; 46:8736-8745. [PMID: 28091639 DOI: 10.1039/c6dt03791g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (AuNPs) and polycationic macromolecules are used as gene carriers. Their behaviour is dependent on several factors, such as the size and type of the framework, charge, etc. We have combined both types of systems and prepared AuNPs covered with cationic carbosilane dendrons with the aim to evaluate their biocompatibility. Water soluble dendronized cationic AuNPs were prepared following a straightforward procedure from dendrons, a gold precursor and a reducing agent in water and were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), and zeta potential (ZP). The biological properties of dendrons and AuNPs were determined by hemolysis, platelet aggregation and lymphocyte proliferation. These assays reflect modification of dendron properties when covering nanoparticles. For dendrons, hemolysis and platelet aggregation are generation dependent whilst, for AuNPs these properties are related to the bigger size of NPs. On the other hand, none of the systems induced lymphocyte proliferation. Selected cationic dendrons and AuNPs were chosen for gene delivery experiments employing a small interference RNA (siRNA Nef) against human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Cornelia E Peña-González
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
8
|
Fontoura IC, Trombone A, Almeida LP, Lorenzi JCC, Rossetti RAM, Malardo T, Padilha E, Schluchting W, Silva RLL, Gembre AF, Fiuza JEC, Silva CL, Panunto-Castelo A, Coelho-Castelo AAM. B cells expressing IL-10 mRNA modulate memory T cells after DNA-Hsp65 immunization. Braz J Med Biol Res 2015; 48:1095-100. [PMID: 26397973 PMCID: PMC4661025 DOI: 10.1590/1414-431x20154409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 06/30/2015] [Indexed: 11/26/2022] Open
Abstract
In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43-) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells.
Collapse
Affiliation(s)
- I. C. Fontoura
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | | | - L. P. Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - J. C. C. Lorenzi
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - R. A. M. Rossetti
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São
Paulo, SP, Brasil
| | - T. Malardo
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - E. Padilha
- Universidade Paranaense, Cascavel, PR,
Brasil
| | - W. Schluchting
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - R. L. L. Silva
- Departamento de Educação em Saúde, Universidade Federal de Sergipe,
Lagarto, SE, Brasil
| | - A. F. Gembre
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - J. E. C. Fiuza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - C. L. Silva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| | - A. Panunto-Castelo
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto,
Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A. A. M. Coelho-Castelo
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirão Preto, SP, Brasil
| |
Collapse
|