1
|
Cui C, Wang Y, Ying J, Zhou W, Li D, Wang LJ. Low glycemic index noodle and pasta: Cereal type, ingredient, and processing. Food Chem 2024; 431:137188. [PMID: 37604009 DOI: 10.1016/j.foodchem.2023.137188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The consumption of noodles with a high glycemic index (GI) can affect health, prompting the need for dietary adjustments to manage abnormal blood glucose levels. This review delves into recent progress in low GI noodles and their potential effect for human well-being. Diverse approaches, encompassing the incorporation of soluble dietary fiber, modified starches, proteins, and plant polyphenols, have shown encouraging outcomes in diminishing the GI of noodles. Furthermore, variations in processing, storage, and cooking techniques can influence the GI of noodles, yielding both positive and negative impacts on their glycemic response. Soluble dietary fiber, protein cross-linkers, and plant polyphenols play a pivotal role in reducing the GI of noodles by hindering the interaction between digestive enzymes and starch, thereby curbing enzymatic activity. Future research spotlighting ingredients, processing methodologies, and the underlying mechanisms of low GI noodles will contribute substantively to the development of functional foods boosting enhanced nutritional profiles.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jian Ying
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, COFCO, Beijing 100020, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Bangar SP, Ali NA, Olagunju AI, Pastor K, Ashogbon AO, Dash KK, Lorenzo JM, Ozogul F. Starch-based noodles: Current technologies, properties, and challenges. J Texture Stud 2023; 54:21-53. [PMID: 36268569 DOI: 10.1111/jtxs.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
Starch noodles are gaining interest due to the massive popularity of gluten-free foods. Modified starch is generally used for noodle production due to the functional limitations of native starches. Raw materials, methods, key processing steps, additives, cooking, and textural properties determine the quality of starch noodles. The introduction of traditional, novel, and natural chemical additives used in starch noodles and their potential effects also impacts noodle quality. This review summarizes the current knowledge of the native and modified starch as raw materials and key processing steps for the production of starch noodles. Further, this article aimed to comprehensively collate some of the vital information published on the thermal, pasting, cooking, and textural properties of starch noodles. Technological, nutritional, and sensory challenges during the development of starch noodles are well discussed. Due to the increasing demands of consumers for safe food items with a long shelf life, the development of starch noodles and other convenience food products has increased. Also, the incorporation of modified starches overcomes the shortcomings of native starches, such as lack of viscosity and thickening power, retrogradation characteristics, or hydrophobicity. Starch can improve the stability of the dough structure but reduces the strength and resistance to deformation of the dough. Some technological, sensory, and nutritional challenges also impact the production process.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemenson, South Carolina, USA
| | - N Afzal Ali
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, India
| | | | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Kshirod K Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad deVigo, Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
3
|
Review on the physicochemical properties, modifications, and applications of starches and its common modified forms used in noodle products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106286] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Shelf stability of low glycemic index noodles: its physico-chemical evaluation. Journal of Food Science and Technology 2018; 55:4811-4822. [PMID: 30482976 DOI: 10.1007/s13197-018-3414-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Noodles are popularising among all age groups and all region throughout the World. To cater the demand of consumer noodles should be shelf-stable. Noodles prepared from chemically modified ingredients were studied for their keeping quality at two different conditions namely, ambient (27 °C, 65% RH) and accelerated (37 °C, 92% RH) for the period of 180 days (6 months). Samples were withdrawn at regular intervals and analysed for their physico-chemical and nutritional parameters. Results showed that Maximum cooking loss was observed in GP-OCT (180 days) 5.9% and was with in the acceptable range (8%). Firmness of noodles increased on storage up to 60 days later reduced. Starch digestibility increased 5-8% in all the samples upon storage. EGI of samples increased 10-15% on storage. Samples prepared with chemically modified ingredients were acceptable till the end of 180 days (2 samples) with good acceptability and low EGI without affecting its quality. Hence, it can be concluded that noodles prepared with modified ingredients using chemicals are shelf-stable up to 6 months at ambient condition.
Collapse
|
5
|
Kumar SB, Prabhasankar P. Enzyme treated flours in noodle processing: a study on an innovative technology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9494-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Waduge RN, Warkentin TD, Donner E, Cao R, Ramdath DD, Liu Q. Structure, Physicochemical Properties, and In Vitro Starch Digestibility of Yellow Pea Flour Modified with Different Organic Acids. Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0068-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Renuka Nilmini Waduge
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Elizabeth Donner
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - Rong Cao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - D. Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - Qiang Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|