1
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
2
|
Sinha A, Gill P, Jawandha S, Grewal S. Composite coating of chitosan with salicylic acid retards pear fruit softening under cold and supermarket storage. Food Res Int 2022; 160:111724. [DOI: 10.1016/j.foodres.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
3
|
Li HL, Li MJ, Zhao Q, Huang JJ, Zu XY. Analysis of Water Distribution and Muscle Quality of Silver Carp ( Hypophthalmichthys molitrix) Chunks Based on Electron-Beam Irradiation. Foods 2022; 11:2963. [PMID: 36230039 PMCID: PMC9563409 DOI: 10.3390/foods11192963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Electron-beam irradiation (EBI) is an efficient, safe, and nonthermal sterilization technique that is extensively used in food preservation research. Here we report the effects of different EBI doses (0, 4, 8 kGy) and preservation temperatures (room temperature [RT], 4 °C) on the muscle water distribution and muscle quality indices of silver carp chunks (SCCs). The highest entrapped water content was found in the 4-kGy-irradiated/4-°C-stored samples. The expressible moisture content (EMC) of the SCCs increased with increasing irradiation dose and was significantly lower in the RT group than in the 4 °C group. The irradiation dose and preservation temperature had no significant effect on the moisture content, whiteness value and protein content of SCCs (p > 0.05). When the irradiation dose reached 8 kGy, AV value, POV value and TVB value were significantly increased (p < 0.05). The myofibrillar protein content and actomyosin content of the SCCs in the 4 °C group was higher than that of the specimens in the RT group by 0.29−0.98 mg/mL (p < 0.05) and 36.21−296.58 μg/mL (p < 0.05), respectively. Overall, EBI treatment (4 kGy) and low-temperature preservation (4 °C) helped retain the muscle water content of the SCCs and preserve their quality, thereby endorsing the EBI treatment of silver carp products.
Collapse
Affiliation(s)
- Hai-Lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Mei-Jin Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qing Zhao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jia-Jun Huang
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xiao-Yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| |
Collapse
|
4
|
Hossen Toushik S, Park JH, Kim K, Ashrafudoulla M, Senakpon Isaie Ulrich M, Furkanur Rahman Mizan M, Kumar Roy P, Shim WB, Kim YM, Hong Park S, Ha SD. Antibiofilm efficacy of Leuconostoc mesenteroides J.27-derived postbiotic and food-grade essential oils against Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli alone and in combination, and their application as a green preservative in the seafood industry. Food Res Int 2022; 156:111163. [DOI: 10.1016/j.foodres.2022.111163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023]
|
5
|
Cao J, Liu W, Mei J, Xie J. Effect of Locust Bean Gum-Sodium Alginate Coatings Combined with High CO 2 Modified Atmosphere Packaging on the Quality of Turbot ( Scophthalmus maximus) during Refrigerated Storage. Polymers (Basel) 2021; 13:polym13244376. [PMID: 34960928 PMCID: PMC8707299 DOI: 10.3390/polym13244376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
This research was conducted to investigate the effect of active coatings composed of locust bean gum (LBG) and sodium alginate (SA) containing daphnetin emulsions (DEs) combined with modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of turbot during 4 °C refrigerated storage for 32 days. The results revealed that LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) maintained the total viable count (TVC) of H2S-producing bacteria in 4–6 lg CFU/g, which is lower than the limit (7 lg CFU/g). In addition, LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) inhibited the production of odor compounds, including thiobarbituric acid (TBA), trimethylamine-nitrogen (TMA-N), K value, and total volatile basic nitrogen (TVB-N). The low-field NMR analysis (LF-NMR) and magnetic resonance imaging (MRI) indicated that LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) treatments could delay the release of water located in muscle fiber macromolecules or convert it into free water based on muscle fiber destruction, thus maintaining the water content and migration. The results of the sensory evaluation showed that turbot treated with LBG-SA-DE coatings together with MAP could maintain its freshness during refrigerated storage.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
| | - Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|
6
|
Jiang C, Ning J, Mei Z, Chen J, Gao Y, Yi X, Wu P. Development of food electronic nose for prawn ( macrobrachium rosenbergii) quality rapid assessment and their relationship with the physicochemical index. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1879135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chenhao Jiang
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Jingyuan Ning
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Zhenghao Mei
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Jiaqi Chen
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Yuanyuan Gao
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Xiaomei Yi
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| | - Peng Wu
- Zhejiang A&F University, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Hangzhou
| |
Collapse
|
7
|
Multi-Analyte MS Based Investigation in Relation to the Illicit Treatment of Fish Products with Hydrogen Peroxide. TOXICS 2020; 8:toxics8010002. [PMID: 31936204 PMCID: PMC7151737 DOI: 10.3390/toxics8010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 11/28/2022]
Abstract
Fishery products are perishable due to the action of many enzymes, both endogenous and exogenous. The latter are produced by bacteria that may contaminate the products. When fishes age, there is a massive bacteria growth that causes the appearance of off-flavor. In order to obtain “false” freshness of fishery products, an illicit treatment with hydrogen peroxide is reported to be used. Residues of hydrogen peroxide in food may be of toxicology concern. We developed two mass spectrometry based methodologies to identify and quantify molecules related to the treatment of fishes with hydrogen peroxide. With ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS) we evaluated the concentration of trimethylamine-N-oxide (TMAO), trimethylamine (TMA), dimethylamine (DMA), and cadaverine (CAD) in fish products. After evaluating LOQ, we measured and validated the lower limits of quantification (LLOQs as first levels of calibration curves) values of 50 (TMAO), 70 (TMA), 45 (DMA), and 40 (CAD) ng/mL. A high ratio between TMAO and TMA species indicated the freshness of the food. With a GC-MS method we confirmed the illicit treatment measuring the levels of H2O2 after an analytical reaction with anisole to give 2-hydroxyanisole as a marker. This latter product was detected in the headspace of the homogenized sample with simplification of the work-up. A LLOQ of 50 ng/mL was checked and validated. When fish products were whitened and refreshed with hydrogen peroxide, the detected amount of the product 2-hydroxyanisole could be very important, (larger than 100 mg/kg). The developed analytical methods were suitable to detect the illicit management of fishery products with hydrogen peroxide; they resulted as sensitive, selective, and robust.
Collapse
|
8
|
Bogdanov V, Simdyankin A. Thermal properties of commercial hydrobionts’ tissues in the freezing process. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-247-254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper describes changes in thermal properties in the process of freezing of marine raw materials. The study objects were the skin of giant octopus (Octopus dofleini L.), pallium of Pacific squid (Todarodes pacificus L.), milt of Pacific herring (Clupea pallasii L .), a nd muscle t issue of Japanese c ucumaria (Cucumaria japonica L.). The mathematical relations of the studied thermal parameters allowing the calculation of specific heat capacity, thermal conductivity coefficient and tissue density of the studied objects in the process of freezing were obtained. It was found that the change in the total specific heat capacity during the freezing of all the objects under study was of the same type: first, this figure increases due to the intensive ice formation in the tissues of hydrobionts, and then decreases due to a significant decrease in the content of the liquid aqueous phase. The values of the total specific heat capacity before the freezing of seafood were determined (kJ/kg·K): 4.26 for squid, 3.58 for milt of Pacific herring, 3.66 for octopus skin, and 3.95 for the shell of cucumaria. It was revealed that an increase in the amount of frozen out water decreased the density of samples of frozen raw materials. This was due to the high (77.4–88.9%) content of water, turning into ice, which has a lower density index. The values of hydrobionts’ tissue density before freezing were obtained ( 0 ρ , kg/m3): 1226.74 for squid, 1209.6 for milt of Pacific herring, 1128.55 for octopus skin, and 031.26 for shell of cucumaria. It was established that the thermal conductivity of the hydrobiont tissue samples in the process of freezing increased with the growth of the proportion of frozen out water contained, approaching the thermal conductivity of ice. The calculated values of thermal conductivity coefficient of seafood tissue prior to freezing equal (W/m·K): 0.52 for squid, 0.47 for milt of Pacific herring, 0.63 for octopus skin, and 0.53 for cucumaria. The obtained thermal characteristics values of the objects studied are recommended for use in technical and technological calculations of aquatic biological resources cooling treatment processes.
Collapse
|