1
|
Wang K, Zhu G, Li YL, Chen SQ, Rashid A, Wang XT, Wu XY. Non-thermal effects of microwave irradiation alleviates postharvest chilling injury of peach fruit by retarding phenolic accumulation and enhancing membrane stability. Food Chem 2023; 411:135448. [PMID: 36709641 DOI: 10.1016/j.foodchem.2023.135448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Postharvest chilling injury (CI) of fruit, including peaches, is a huge challenge to horticultural product preservation. Microwave irradiation can be used as a physiological regulator due to the thermal effects; however, its non-thermal effects on the CI of postharvest fruit remain unclear. Thus, the physiological attributes and metabolisms involving phenolics, fatty acids, and sugars were compared between 'Zhongtao No.9' peaches treated with microwave irradiation at 45.5 W for different durations and control. Microwave treatment especially at 45.5 W for 7 min without inducing thermal effects could significantly inhibit internal browning caused by CI, concomitant with reduced total phenolic content. Moreover, the maintenance of membrane stability was indicated by a boosted double bond index, which may be attributed to the inhibition of membrane lipid degradation, and sucrose accumulation. In summary, the non-thermal effects of microwave irradiation contribute to CI alleviation through restraining phenolic content and maintaining membrane stability in peach fruit.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China.
| | - Ge Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Ya-Li Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Shu-Qi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Arif Rashid
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Tong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Xin-Yu Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs/Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Palumbo M, Attolico G, Capozzi V, Cozzolino R, Corvino A, de Chiara MLV, Pace B, Pelosi S, Ricci I, Romaniello R, Cefola M. Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview. Foods 2022; 11:3925. [PMID: 36496732 PMCID: PMC9737221 DOI: 10.3390/foods11233925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Quality losses in fresh produce throughout the postharvest phase are often due to the inappropriate use of preservation technologies. In the last few decades, besides the traditional approaches, advanced postharvest physical and chemical treatments (active packaging, dipping, vacuum impregnation, conventional heating, pulsed electric field, high hydrostatic pressure, and cold plasma) and biocontrol techniques have been implemented to preserve the nutritional value and safety of fresh produce. The application of these methodologies after harvesting is useful when addressing quality loss due to the long duration when transporting products to distant markets. Among the emerging technologies and contactless and non-destructive techniques for quality monitoring (image analysis, electronic noses, and near-infrared spectroscopy) present numerous advantages over the traditional, destructive methods. The present review paper has grouped original studies within the topic of advanced postharvest technologies, to preserve quality and reduce losses and waste in fresh produce. Moreover, the effectiveness and advantages of some contactless and non-destructive methodologies for monitoring the quality of fruit and vegetables will also be discussed and compared to the traditional methods.
Collapse
Affiliation(s)
- Michela Palumbo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Giovanni Attolico
- Institute on Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Antonia Corvino
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Maria Lucia Valeria de Chiara
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Sergio Pelosi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Ilde Ricci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Roberto Romaniello
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Maria Cefola
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| |
Collapse
|
3
|
Tran T, Yang L, Zhou H, Pan D, Xu D, Shi X, Wang S, Chen S, Sun G. Evaluating quality indexes of frozen vegetables prepared with different cooking oils during 12 months of frozen storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022; 16:1404-1415. [DOI: 10.1007/s11694-022-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|