1
|
Zhao M, Chen L, Liu F, Zhong F, Chen M, Jin H, Kang J, Wu J, Xu J. The impact of glycerol monostearate's similarity to fats and fatty acid composition of fats on fat crystallization, destabilization, and texture properties of ice cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6837-6848. [PMID: 37278491 DOI: 10.1002/jsfa.12768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fat significantly affects the properties of ice cream. Prior studies have investigated the correlation between fat crystallization, fat destabilization, and ice cream quality. However, the role of fatty acid composition, the similarity between fat and emulsifier in these characteristics, and their impact on final product quality remains unclear. RESULTS To investigate the influence of the fatty acid composition of fats, as well as their similarity to glycerol monostearate (GMS), on fat crystallization and destabilization during the aging and freezing stages, ice creams were formulated using a combination of two types of fats (coconut oil and palm olein) in five different ratios. In oil phases, decreased saturation of fatty acids (from 93.38% to 46.69%) and increased similarity to GMS (from 11.96% to 46.01%) caused a reduction in the maximum solid fat content. Moreover, the rise in unsaturated long-chain fatty acids (from 34.61% to 99.57%) and similarity to GMS enhanced the formation of rare and coarse fat crystals, leading to a sparse crystalline network. This, in turn, reduced the crystallization rate and the stiffness of the fat in emulsions. Assuming consistent overrun across all ice creams, the enhanced interactions between fat globules in ice cream improved its hardness, melting properties, and shrinkage. CONCLUSION The crystalline properties of fat in emulsions were influenced by oil phases, impacting fat destabilization and ultimately enhancing the quality of ice cream. The present study offers valuable insights for the optimization of fat and monoglyceride fatty acid ester selection, with the potential to improve ice cream quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengdi Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ling Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Huajin Jin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Jingran Kang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Juan Wu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Jun Xu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Lin D, Zhao J, Fan H, Qin W, Wu Z. Enhancing starch nanocrystal production and evaluating their efficacy as fat replacers in ice cream: Investigating the influence of high pressure and ultrasonication. Int J Biol Macromol 2023; 251:126385. [PMID: 37595721 DOI: 10.1016/j.ijbiomac.2023.126385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
A preparation method involving the combination of high-pressure homogenization and ultrasound (HPH-US) techniques was employed to produce starch nanocrystals (NCs) from three botanical starch sources: chestnut, corn starch, and potato starch. The optimal conditions, determined using response surface methodology, consisted of a homogenization pressure of 60 MPa and ultrasound at 280 W for 30 min. The utilization of dynamic light scattering (DLS) and transmission electron microscopy (TEM) unveiled that the resulting starch particles exhibited nanometric dimensions ranging from 135.36 to 203.47 nm. The mechanical forces generated by the HPH-US treatment significantly enhanced the physicochemical properties of the starch NCs, leading to a partial disruption of the crystalline structure. Moreover, the potential application of the synthesized starch NCs as fat replacers (FRs) was investigated. As the degree of substitution increased, notable improvements were observed in the hardness and viscosity of ice cream, accompanied by a reduction in the melting rate. The overall sensory evaluation indicated that corn starch NCs held substantial promise as a viable alternative FR for enhancing the quality of ice cream.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jingjing Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Hao Fan
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| |
Collapse
|
3
|
Yu B, Chen Q, Regenstein JM, Ye C, Wang L. The lipid digestion behavior of oil-in-water emulsions stabilized by different particle-sized insoluble dietary fiber from citrus peel. Food Chem X 2023; 19:100831. [PMID: 37780308 PMCID: PMC10534149 DOI: 10.1016/j.fochx.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, oil-in-water emulsions stabilized by insoluble dietary fibre from citrus peel (CIDF) exhibited an obviously delayed lipid digestion property through gastrointestinal tract (GIT) model. Our results suggested that the rate and extent of lipid digestion greatly relied on particle sizes and concentrations of CIDF, and the inhibition effect of lipolysis was markedly enhanced with decreasing particle sizes and increasing CIDF levels. Furthermore, compared with Tween80-stabilized emulsion, the maximum inhibition extent of lipolysis was 38.77% for CIDF400-stabilized one at 0.4 wt% concentration. Effects of CIDFs on lipid digestion was mainly due to the formation of protective layers around oil droplets, further blocking the entry of lipase to the internal lipids, and/or attributed to the increasing viscosity of emulsions caused by CIDFs, finally limiting the transportation of some substances in the simulated small intestine digestion. Our research would provide useful references for the application of CIDF-stabilized emulsions in low-calorie food.
Collapse
Affiliation(s)
- Ben Yu
- College of Food Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong 518000, China
| | - Qianqian Chen
- Jinxiang Economic Development Zone Food Industrial Park, Shandong 272209, China
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
4
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
5
|
Zhao Y, Khalesi H, He J, Fang Y. Application of different hydrocolloids as fat replacer in low-fat dairy products: Ice cream, yogurt and cheese. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Kumari S, Yadav BS, Yadav RB. Effect of nano-conversion on morphological, rheological and thermal properties of barley starch. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:467-477. [PMID: 35185170 PMCID: PMC8814227 DOI: 10.1007/s13197-021-05029-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to synthesize biodegradable starch nanoparticles (SNP's) from a renewable source like barley starch and to characterize for morphological, crystalline, thermal, and rheological properties. Acid hydrolysis transformed A+V-type round or disc-shaped native starch (NS) granules with an average width of 10 µm and the average length of 22 µm into round or irregular shaped A-type SNP's with an average size of 64 nm with the crystallinity enhanced from 41.75 to 48.08%. The zeta potential of NS and SNP's was - 17.7 and - 21.4 nm, respectively, with the higher stability of SNP's. The gelatinization temperature increased while melting decreased after nano conversion of barley starch. The storage and loss moduli of 12 and 15% suspension of SNP's remained unchanged with a change in angular frequency (0.1-10 rad-s), which indicated a greater tendency to recover after deformation, while 20% SNP's suspension behaved like a viscous fluid. The flow behavior test demonstrated a shear-thinning behavior of SNP's suspension.
Collapse
Affiliation(s)
- Suman Kumari
- grid.411524.70000 0004 1790 2262Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Baljeet S. Yadav
- grid.411524.70000 0004 1790 2262Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Ritika B. Yadav
- grid.411524.70000 0004 1790 2262Department of Food Technology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
7
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Kumar A, Kumari P, Gupta K, Singh M, Tomer V. Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashwani Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Pooja Kumari
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Kritika Gupta
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, USA
| | - Manjot Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Modification of physicochemical, structural, rheological, and organoleptic properties of sweetened condensed milk by maltodextrin, fructose, and lactose. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00976-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Quality Characteristics of Beef Patties Prepared with Octenyl-Succinylated (Osan) Starch. Foods 2021; 10:foods10061157. [PMID: 34063985 PMCID: PMC8223992 DOI: 10.3390/foods10061157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Octenyl-succinylated corn starch (Osan) was used to improve the physicochemical properties of ground beef patties. The study involved incorporation of 5 and 15% Osan and storage for 30 or 60 days at −20 °C. The tested parameters included cooking loss, microstructure image, firmness, color, and sensory evaluation of the prepared patties. Along with Osan, native corn starch was used as control and considered the patties with added animal fat. The data showed that Osan reduced the cooking loss and dimensional shrinkage significantly (p < 0.05), whereas the moisture retention, firmness and color of beef patties were improved. The sensory evaluation indicated enhanced tenderness and juiciness without significant alteration of flavor, color, and overall acceptability of the cooked patties. Microstructure images of cooked patties indicated uniform/cohesive structures with small pore size of patties shaped with Osan. Obviously, good storability of the uncooked patties was reflected on the physiochemical, textural, color, and sensory evaluation of the cooked patties, which points to the benefit of using Osan in frozen patties and signifies possible use in the meat industry. The overall sensory acceptability scores were given to cooked patties containing Osan starch as well as the native starch, whereas 15% animal fat was favored too.
Collapse
|
11
|
Yu B, Zeng X, Wang L, Regenstein JM. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydr Polym 2021; 254:117415. [PMID: 33357899 DOI: 10.1016/j.carbpol.2020.117415] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/02/2023]
Abstract
Grapefruit peel nanofibrillated cellulose (GNFC) was used as fat substitute in ice cream. GNFC was characterized by TEM, SEM, and XRD. The effects of GNFC on textural profiles, rheological properties, melting resistance, sensory properties, microstructure, and gross energy (GE) of ice cream were investigated. The results showed that GNFC was short rod-shaped crystal. Ice cream added with GNFC exhibited elastic-dominated behavior and better textural properties. The sensory evaluation score reached the highest level with desirable three-dimensional network structure at 0.4 % GNFC addition. GE of ice cream significantly decreased with reducing fat with maximal reduction rate of 17.90 %. Furthermore, the results of in vitro simulated digestion showed that GNFC addition and fat reduction significantly inhibited fat digestibility of ice cream due to coalescence of fat droplets on GNFC. This study provides new sustainable perspectives for the application of GNFC prepared from agricultural waste as fat substitute in food products.
Collapse
Affiliation(s)
- Ben Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Iftikhar SA, Dutta H. Use of Raw and Physically Modified Rice Starches as Fat Replacer in Whipping Cream. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.1.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raw, retrograded and retrograded-annealed starches obtained in a previous novel study from three rice varieties widely differing in apparent amylose content (22.7%, 9.8% and 0.3%) were applied for partially replacing fat in fresh cream to prepare to the consistency of whipping cream with approximately 15% final fat concentration. Properties of the whipped creams were studied and compared with a commercial whipping cream taken as standard. Differences between the mean values were assessed by Duncan’s multiple range tests at a significance level of 95%. Fat replacement resulted in whipping time as low as 60 seconds and improved foam stability of the whipped creams with significant overrun (up to 44%), suggesting industrial applicability of the starch samples as fat replacers. Incorporated starch resulted in better water retention and structural stability lower weeping out of liquid upon freezing and thawing. Modified waxy starch substitution resulted in cream texture closest to the commercial cream standard, suggesting efficient fat replacement. Thereby, starch incorporated whipping cream with more than 62% lower fat content than commercial variants could be obtained. This would thereby help in lower glycemic index, low calorie and lower priced alternative to common fat-rich whipping creams.
Collapse
Affiliation(s)
- Shah Asma Iftikhar
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India - 201301
| | - Himjyoti Dutta
- Department of Food Technology, Mizoram University, Aizawl, India - 796004
| |
Collapse
|
13
|
Chen Y, She Y, Zhang R, Wang J, Zhang X, Gou X. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Sci Nutr 2020; 8:16-22. [PMID: 31993128 PMCID: PMC6977435 DOI: 10.1002/fsn3.1303] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/21/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular disease (CVD) has emerged as one of the leading causes of death worldwide. Elevated blood cholesterol and low-density lipoprotein levels are crucial risk factors that contribute to the development of CVD and other metabolic diseases. Dietary fat is believed to be the key factor in modulating circulating cholesterol levels. Thus, reducing dietary intake of fat appears to be an effective strategy to reduce the risk of heart disease. Also, excessive intake of fat and high-calorie foods is also related to the development of obesity, which contributes to the development of CVD. Therefore, the consumption of low-fat low-calorie foods is part of a healthier dietary pattern. However, simply removing fat from foods may lead to compromised overall quality and reduced acceptance of the food products. Thus, fat replacers have emerged as ideal alternatives to dietary fat, which can not only reduce the overall fat and calorie content of the foods but also mimic the physiochemical properties of dietary fat. Starch-based fat replacers are one kind of fat mimetic that can be produced either chemically as modified starch or enzymatically as maltodextrins. Both modified starch and maltodextrins have been demonstrated to have a promising ability to improve the overall quality of reduced-fat foods. Modified starch granules act directly as fat globules in modulating the structure and sensory characteristics of the foods, whereas maltodextrins can form thermoreversible gels. Both modified starch granules and maltodextrins can create a fat-like mouthfeel and therefore are potential fat replacers. This review article aims to discuss the following topics: (a) the effect of carbohydrates and fat on human cardiovascular health and other disease risks, (b) the functionality of starch-based fat replacers in foods, (c) the applications of starch-based fat replacers in various foods, and (d) the current and future market value of starch-based fat replacers.
Collapse
Affiliation(s)
- Yuwei Chen
- Shaanxi Key Laboratory of Brain DisordersDepartment of Public HealthXi’an Medical UniversityXi’anChina
| | - Yongbo She
- Metabolic and Cardiovascular Diseases LaboratoryLi Ka Shing Centre for Health Research InnovationUniversity of AlbertaEdmontonAlbertaCanada
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational MedicineXi’an Medical UniversityXi’anChina
| | - Jieying Wang
- Shaanxi Key Laboratory of Brain DisordersDepartment of Public HealthXi’an Medical UniversityXi’anChina
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational MedicineXi’an Medical UniversityXi’anChina
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic Medical Sciences & Institute of Basic and Translational MedicineXi’an Medical UniversityXi’anChina
| |
Collapse
|
14
|
Hu Y, Li C, Regenstein JM, Wang L. Preparation and properties of potato amylose-based fat replacer using super-heated quenching. Carbohydr Polym 2019; 223:115020. [DOI: 10.1016/j.carbpol.2019.115020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/27/2022]
|
15
|
Evaluating the effect of fat content on the properties of vanilla ice cream using principal component analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00162-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|