1
|
Różyło R, Amarowicz R, Janiak MA, Domin M, Różyło I, Rząd K, Matwijczuk A, Rusinek R, Gancarz M. Micronized Rose Petal Powder: A Valuable Edible Floral Food Ingredient Containing Bioactive Compounds. Molecules 2024; 29:4931. [PMID: 39459298 PMCID: PMC11510708 DOI: 10.3390/molecules29204931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Flower petals, as byproducts, provide significant health benefits and can be used in food production. In this study, the impact of the micronization process using a ball mill on the properties of micronized powders derived from wild rose petals of the rugosa variety (Rosa rugosa Thunb.) was examined. The micronized rose powders were subjected to an investigation regarding their particle size, color, molecular characterization (FTIR), electronic nose procedure and antioxidant potential. The study found that micronization considerably reduced d50 particle dimensions from 98.6 µm to 39.9 µm. An FTIR analysis revealed the presence of characteristic (2980, 1340, and 1225 cm-1) bands. The hydrolysable tannins are the most abundant polyphenolic chemicals in rose powders, followed by anthocyanins. Rose powders are an extremely valuable antioxidant raw material due to their high total phenol content (71.8 mg GAE/g), which increased by approximately 26% after micronization. The antioxidant activity, as determined by ABTS•+, DPPH• and FRAP, is likewise very high. The intensity of volatile chemicals decreased in powders after micronization.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food, Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (R.A.); (M.A.J.)
| | - Michał Adam Janiak
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food, Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (R.A.); (M.A.J.)
| | - Marek Domin
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland;
| | - Igor Różyło
- Faculty of Medicine, Medical University of Lodz, Al. Kościuszki 4, 90-419 Łódź, Poland;
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (K.R.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (K.R.); (A.M.)
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (R.R.); (M.G.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (R.R.); (M.G.)
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Center for Innovation and Research on Pro-Healthy and Safe Food, University of Agriculture in Kraków, Balicka 104, 30-149 Kraków, Poland
| |
Collapse
|
2
|
Różyło R, Amarowicz R, Janiak MA, Domin M, Gawłowski S, Kulig R, Łysiak G, Rząd K, Matwijczuk A. Micronized Powder of Raspberry Pomace as a Source of Bioactive Compounds. Molecules 2023; 28:4871. [PMID: 37375425 DOI: 10.3390/molecules28124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Red raspberries, which contain a variety of nutrients and phytochemicals that are beneficial for human health, can be utilized as a raw material in the creation of several supplements. This research suggests micronized powder of raspberry pomace production. The molecular characteristics (FTIR), sugar, and biological potential (phenolic compounds and antioxidant activity) of micronized raspberry powders were investigated. FTIR spectroscopy results revealed spectral changes in the ranges with maxima at ~1720, 1635, and 1326, as well as intensity changes in practically the entire spectral range analyzed. The discrepancies clearly indicate that the micronization of the raspberry byproduct samples cleaved the intramolecular hydrogen bonds in the polysaccharides present in the samples, thus increasing the respective content of simple saccharides. In comparison to the control powders, more glucose and fructose were recovered from the micronized samples of the raspberry powders. The study's micronized powders were found to contain nine different types of phenolic compounds, including rutin, elagic acid derivatives, cyanidin-3-sophoroside, cyanidin-3-(2-glucosylrutinoside), cyanidin-3-rutinoside, pelargonidin-3-rutinoside, and elagic acid derivatives. Significantly higher concentrations of ellagic acid and ellagic acid derivatives and rutin were found in the micronized samples than in the control sample. The antioxidant potential assessed by ABTS and FRAP significantly increased following the micronization procedure.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Ryszard Amarowicz
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Michał Adam Janiak
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marek Domin
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland
| | - Sławomir Gawłowski
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Ryszard Kulig
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Grzegorz Łysiak
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Klaudia Rząd
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Institute of Molecular Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Tech-Nologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033 Lublin, Poland
| |
Collapse
|
3
|
Chehraghi M, Jafarizadeh-Malmiri H, Javadi A, Anarjan N. Effects of planetary ball milling and ultrasonication on the nutrients and physico–chemical and biological properties of the honey bee pollen. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Li J, Wang Z, Fan M, Hu G, Guo M. Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red. Antioxidants (Basel) 2022; 11:antiox11091651. [PMID: 36139724 PMCID: PMC9495925 DOI: 10.3390/antiox11091651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Polygonatum sibiricum Red. (P. sibiricum) has been used as a traditional Chinese medicine with a wide range of pharmacology effects. However, the responsible bioactive compounds and their mechanisms of action concerning its antioxidative and anti-hyperuricemic activities remain unexplored. In this work, the antioxidant capacity of P. sibiricum was firstly evaluated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-(3ethylbenzthiazoline)-6-sulfonic acid (ABTS) and ferric-reducing antioxidant power (FRAP) assays, from which the ethyl acetate (EA) fraction exhibited the highest DPPH, ABTS radical scavenging, and ferric-reducing capacities. Meanwhile, the EA fraction displayed the highest total phenolic and flavonoid contents among the four fractions. Next, the potential ligands from the EA fraction were screened out by bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS) with superoxide dismutase (SOD) and xanthine oxidase (XOD). As a result, N-trans-p-coumaroyloctopamine, N-trans-feruloyloctopamine, N-trans-feruloyltyramine were identified as potential SOD ligands, while N-cis-p-coumaroyltyramine was determined as potential XOD ligand. Additionally, these four ligands effectively interact with SOD and XOD in the molecular docking analysis, with binding energies (BEs) ranging from –6.83 to –6.51 kcal/mol, and the inhibition constants (Ki) from 9.83 to 16.83 μM, which were better than the positive controls. In conclusion, our results indicated that P. sibiricum has good antioxidative and anti-hyperuricemic activities, and its corresponding active ligands targeting SOD and XOD could be explored by the UF-LC-MS method.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (G.H.); (M.G.)
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (G.H.); (M.G.)
| |
Collapse
|
5
|
Sharma S, Joshi R, Kumar D. Metabolomics insights and bioprospection of Polygonatum verticillatum: An important dietary medicinal herb of alpine Himalaya. Food Res Int 2021; 148:110619. [DOI: 10.1016/j.foodres.2021.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
|
6
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110248] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|