1
|
Kameni Wendji AP, Tcheumi HL, Kenfack Tonle I, Ngameni E. Dioctylsulfosuccinate Functionalized NiAl-Layered Double Hydroxide for Sensitive Fenuron Electroanalysis Using a Carbon Paste Electrode. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:9237309. [PMID: 39377042 PMCID: PMC11458295 DOI: 10.1155/2024/9237309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 10/09/2024]
Abstract
Environmental pollution resulting from the use of pesticides such as fenuron poses significant health risks due to the carcinogenic and teratogenic properties of these compounds. There is an urgent need to develop rapid and cost-effective detection methods for quantifying fenuron. In this study, an inorganic-organic composite material was obtained by intercalating sodium dioctylsulfosuccinate (DSS) within the interlayer space of a nickel-aluminum-layered double hydroxide (NiAl-LDH). The pristine and modified LDHs (NiAl-LDH) were characterized using Fourier transform infrared, X-ray diffraction, and thermogravimetric analysis, confirming the successful intercalation of DSS in the mineral structure. The modified LDH was used to elaborate a sensor for detecting fenuron herbicide via differential pulse voltammetry (DPV) employing a carbon paste electrode (CPE). The electrochemical procedure for fenuron analysis consisted of immersing the working electrode in an electrolytic solution containing the appropriate amount of fenuron, followed by voltammetry detection without any preconcentration step. Compared to CPE modified by pristine LDH, the peak current obtained on the organo-LDH-modified CPE was twice as high. The increase in the fenuron signal was attributed to the high organophilic feature of this composite material induced by DSS modification. To optimize the sensitivity of the organo-LDH modified electrode, the effects of several experimental parameters such as pH of the medium and proportion of the modifier in the paste on the stripping response were examined. Linear calibration curves were obtained for the fenuron concentrations ranging from 0.5 × 10-6 to 1 × 10-6 mol.L-1 and 1 × 10-6 to 5 × 10-6 mol.L-1. The limit of detection (LOD) calculated on the basis of a signal-to-noise ratio of 3 was found to be 1.8 × 10-8 mol.L-1 for the low concentration range with a limit of quantification (LOQ) which was 6 × 10-8 mol.L-1. Furthermore, the interference effect of several inorganic ions and other pesticides potentially affecting fenuron stripping was explored, and the method's applicability was confirmed by determining fenuron levels in a river sample taken from down-town Yaoundé.
Collapse
Affiliation(s)
- Aude Peggy Kameni Wendji
- Department of Mineral Engineering, School of Chemical Engineering and Mineral Industries, The University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Herve Leclerc Tcheumi
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Environmental Sciences, National Advanced School of Engineering of Maroua, The University of Maroua, P.O. Box 46, Maroua, Cameroon
| | - Ignas Kenfack Tonle
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Chemistry, Faculty of Science, The University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
2
|
Joseph XB, Baby JN, Wang SF, George M. Emerging carbonate anion intercalated- ZnCr-layered double hydroxide/vanadium carbide nanocomposite: Sustainable design strategies based on disposal electrochemical sensor for diethofencarb fungicide monitoring. CHEMOSPHERE 2023:139099. [PMID: 37270040 DOI: 10.1016/j.chemosphere.2023.139099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Diethofencarb (DFC) is widely used in agriculture to fight against plant fungal attacks and enhance food crop production. On the other hand, the National food safety standard has set the overall maximum residual limit (MRL) of DFC to be 1 mg/kg. Hence it becomes essential to limit their usage, and it is vital to quantify the amount of DFC present in real-life samples to safeguard the health and environmental well-being. Here, we introduce a simple hydrothermal procedure for preparing vanadium carbide (VC) anchored by ZnCr-LDH. The sustainably designed electrochemical sensor for the detection of DFC portrayed high electro-active surface area, conductivity, rapid-electron transport ratio, and high ion diffusion parameters. The obtained structural and morphological information confirms the enriched electrochemical activity of the ZnCr-LDH/VC/SPCE towards DFC. The ZnCr-LDH/VC/SPCE electrode has displayed exceptional characteristics with DPV resulting in a vast linear response (0.01-228 μM), and lower LOD (2 nM) with high sensitivity. Real-sample analysis was carried out to demonstrate the specificity of the electrode with an acceptable recovery in both water (±98.75-99.70%) and tomato (±98.00-99.75%) samples.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India; Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala, 673592, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600086, Tamil Nadu, India
| |
Collapse
|
3
|
Chang HW, Chen CL, Chen YH, Chang YM, Liu FJ, Tsai YC. Electrochemical Organophosphorus Pesticide Detection Using Nanostructured Gold-Modified Electrodes. SENSORS (BASEL, SWITZERLAND) 2022; 22:9938. [PMID: 36560305 PMCID: PMC9787336 DOI: 10.3390/s22249938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Chien-Lin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yan-Hua Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Ming Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Feng-Jiin Liu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Karimi F, Demir E, Aydogdu N, Shojaei M, Taher MA, Asrami PN, Alizadeh M, Ghasemi Y, Cheraghi S. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) Drom Azo Dyestuff class. Food Chem Toxicol 2022; 165:113075. [PMID: 35487338 DOI: 10.1016/j.fct.2022.113075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quhchan University of Technology, Quchan, Iran.
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | | | - Marzieh Alizadeh
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| |
Collapse
|
5
|
Aral T, Önal G, Keskin E, Levent A. Firstly Electrochemical Examination of Myosmine at Glassy Carbon Electrode: Sensitive Determination in Tobacco Leaves by Differential Pulse Voltammetry. ELECTROANAL 2021. [DOI: 10.1002/elan.202100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tarık Aral
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| | - Günay Önal
- Department of Medical Services and Techniques Health Services Vocational School Batman University Batman Turkey
| | - Ertuğrul Keskin
- Adıyaman University Faculty of Pharmacy Department of Analytical Chemistry Adıyaman Turkey
| | - Abdulkadir Levent
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| |
Collapse
|
6
|
Aral T, Önal G, Keskin E, Levent A. Firstly Electrochemical Examination of Myosmine at Glassy Carbon Electrode: Sensitive Determination in Tobacco Leaves by Differential Pulse Voltammetry. ELECTROANAL 2021; 33:2392-2399. [DOI: https:/doi.org/10.1002/elan.202100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 07/01/2024]
Abstract
AbstractIn this study, the electrochemical properties of myosmine, one of the tobacco alkaloids, were investigated for the first time using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques on glassy carbon electrode (GCE). Using GCE with CV technique, it gave an irreversible reduction peak with diffusion control at about −1.38 V in Britton‐Robinson (BR, pH 12.0) medium. A good linear relationship between concentration and current in the range of 0.5 μM–3.5 μM in BR (pH 12.0) medium on GCE with DPV technique [Ip(μA)=0.847 C(μM)+0.114, r=0.995, n=7] has been observed. The proposed method has been successfully applied to tobacco leaves.
Collapse
Affiliation(s)
- Tarık Aral
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| | - Günay Önal
- Department of Medical Services and Techniques Health Services Vocational School Batman University Batman Turkey
| | - Ertuğrul Keskin
- Adıyaman University Faculty of Pharmacy Department of Analytical Chemistry Adıyaman Turkey
| | - Abdulkadir Levent
- Department of Chemistry Faculty of Arts and Sciences Batman University Batman Turkey
| |
Collapse
|
7
|
Enzymatic sensing of tyrosine in egg and cheese samples using electrochemical sensor amplified with reduced graphene oxide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01099-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sinha A, Ma K, Zhao H. 2D Ti 3C 2T x flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. J Colloid Interface Sci 2021; 590:365-374. [PMID: 33549895 DOI: 10.1016/j.jcis.2021.01.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022]
Abstract
Present work reports preparation of colloidal single/few layer Ti3C2Tx MXene flakes using minimally intensive layer delamination (MILD) method for rapid electroanalytical screening of carbamate pesticides. Lithium fluoride salt and hydrochloric acid (7.5 M LiF/9M HCl) was used to produce in-situ generated HF as etchant to remove Al successfully from Ti3AlC2 MAX phase. Unlike the clay method (5 M LiF/6M HCl), this methodology simplified Ti3C2Tx synthesis protocol resulting in Li+ ions intercalated Ti3C2Tx which was delaminated without further sonication. The delaminated Ti3C2Tx flakes were found to be single/few layered sheets with mostly -OH and -O terminated surface groups. The characteristic 002 peak observed in X-ray diffraction (XRD) at 2θ = 6.4° with interplaner distance of 1.1137 nm suggested broadening of the peak attributed to the presence of Li+ ions between Ti3C2Tx flakes. Delaminated Ti3C2Tx flakes were utilized as working electrode which demonstrated simultaneous and selective detection of carbamate pesticides methiocarb and diethofencarb by voltammetry. The oxidation peaks of the two pesticides were well separated by a potential difference of 0.35 V in 0.5 M H2SO4 and DPV detection limits were calculated as 0.19 μg mL-1 and 0.46 μg mL-1 for methiocarb and diethofencarb respectively. Ti3C2Tx flakes as electrochemical sensor exhibited long term stability and acceptable recoveries in real sample for environmental applications.
Collapse
Affiliation(s)
- Ankita Sinha
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Kaixin Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
9
|
Demir E, İnam O, Silah H, Karimi-Maleh H. Studies of mechanism, kinetic model and determination of bupivacaine and its application pharmaceutical forms. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|