1
|
Zu X, Zhao Q, Liu W, Guo L, Liao T, Cai J, Li H. Sturgeon (Acipenser schrenckii) spinal cord peptides: Antioxidative and acetylcholinesterase inhibitory efficacy and mechanisms. Food Chem 2024; 461:140834. [PMID: 39153375 DOI: 10.1016/j.foodchem.2024.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qing Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Guo
- School of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China.
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
2
|
Efficient combination of ionic-liquid-based ultrasound-assisted extraction, complex chromatography, and molecular docking for screening of acetylcholinesterase inhibitors from Ganoderma atrum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Moreira TFM, Pessoa LGA, Seixas FAV, Ineu RP, Gonçalves OH, Leimann FV, Ribeiro RP. Chemometric evaluation of enzymatic hydrolysis in the production of fish protein hydrolysates with acetylcholinesterase inhibitory activity. Food Chem 2021; 367:130728. [PMID: 34380107 DOI: 10.1016/j.foodchem.2021.130728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/16/2021] [Accepted: 07/27/2021] [Indexed: 11/04/2022]
Abstract
Fish protein hydrolysates (FPH) obtained from industrial processing residues are sources of bioactive peptides. The enzymatic hydrolysis process is essential in obtaining specific bioactivities such as inhibition of the enzyme acetylcholinesterase (AChE). In this study the effect of different hydrolysis conditions on the properties of FPH to inhibit the enzyme acetylcholinesterase. A chemometric evaluation, based on a central composite rotatable design and principal component analysis, was applied to select hydrolysis conditions with best yield, degree of hydrolysis and acetylcholinesterase inhibition. Experimental design results for AChE inhibition were between 10.51 and 40.45% (20, 30 and 50 mg.mL-1 of FPH), and three hydrolysis conditions were selected based on PCA evaluation. The amino acids profile, FTIR and AChE inhibition kinetics were evaluated. Results showed a mixed type of inhibition behavior and, the docking molecular analyzes suggest that the inhibition AChE occurred due to the basic amino acids, mainly by arginine.
Collapse
Affiliation(s)
- Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, CEP 87030-121, Maringá, PR, Brazil.
| | - Luiz Gustavo Antunes Pessoa
- Department of Technology, State University of Maringá, Av. Ângelo Moreira da Fonseca, 1800, CEP 87506-360, Umuarama, PR, Brazil
| | - Flavio Augusto Vicente Seixas
- Department of Technology, State University of Maringá, Av. Ângelo Moreira da Fonseca, 1800, CEP 87506-360, Umuarama, PR, Brazil
| | - Rafael Porto Ineu
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Ricardo Pereira Ribeiro
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, CEP 87030-121, Maringá, PR, Brazil.
| |
Collapse
|