1
|
Dzeikala O, Prochon M, Sedzikowska N. Gelatine Blends Modified with Polysaccharides: A Potential Alternative to Non-Degradable Plastics. Int J Mol Sci 2024; 25:4333. [PMID: 38673918 PMCID: PMC11050030 DOI: 10.3390/ijms25084333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.
Collapse
Affiliation(s)
| | - Miroslawa Prochon
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (O.D.); (N.S.)
| | | |
Collapse
|
2
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Pang S, Wang Y, Jia H, Hao R, Jan M, Li S, Pu Y, Dong X, Pan J. The properties of pH-responsive gelatin-based intelligent film as affected by ultrasound power and purple cabbage anthocyanin dose. Int J Biol Macromol 2023; 230:123156. [PMID: 36621736 DOI: 10.1016/j.ijbiomac.2023.123156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
A pH-sensitive intelligent film was prepared using gelatin as base substrate and purple cabbage anthocyanins (PCA) as indicator with the aid of ultrasound. Fourier transforms infrared and X-ray diffraction analysis showed that 600 W ultrasound brought changes to characteristic bands of gelatin and PCA, and flattened diffraction peak around 2θ = 20°. Film prepared with 600 W ultrasound exhibited high tensile strength and elongation at break and showed high transition temperature and surface hydrophobicity by differential scanning calorimetry and contact angle analysis. The incorporation of <0.35 % PCA had no effect on mechanical properties of films, but it improved the antioxidative activity. Films with 0.14 %, 0.21 % and 0.28 % PCA suggested pronounced color difference at pH 5-8, in accordance with the sharp ΔE difference. Films with 0.28 % PCA was applied for monitoring chilled-stored fish quality. It showed visible color change from pink to atrovirens during storage. The difference of ΔE at various days was ≥5 and ΔE highly correlated with total volatile basic nitrogen. Therefore, gelatin along with PCA under appropriate ultrasound treatment could prepare intelligent film to preserve and monitor the quality of chilled-stored fish.
Collapse
Affiliation(s)
- Shiwen Pang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Wang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Jia
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Ruoyi Hao
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Mraz Jan
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yizhen Pu
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Development of shrimp freshness-monitoring labels by immobilizing black eggplant and black goji berry anthocyanins in different polysaccharide/PVA matrices. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Comparison of the physical and functional properties of food packaging films containing starch and polyphenols from different varieties of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Mezhoudi M, Salem A, Abdelhedi O, Fakhfakh N, Debeaufort F, Jridi M, Zouari N. Edible films from triggerfish gelatin and Moringa oleifera extract: Physical properties and application in wrapping ricotta cheese. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Wu Z, Li Y, Tang J, Lin D, Qin W, Loy DA, Zhang Q, Chen H, Li S. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. ULTRASONICS SONOCHEMISTRY 2022; 87:106052. [PMID: 35660275 PMCID: PMC9168617 DOI: 10.1016/j.ultsonch.2022.106052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, chitosan(CS), nano-silicon aerogels(nSA) and tea polyphenols(TP) were used as film-forming materials and processed with ultrasonication to form films using the tape-casting method. The effects of ultrasonication time, temperature and frequency on the properties of CS/nSA/TP film were explored via material property testing. The results of response surface showed that the maximum tensile strength of the film was 4.036 MPa at ultrasonication time(57.97 min), temperature(37.26 °C) and frequency(30 kHz). The maximum elongation at break of the film was 279.42 % at ultrasonication time(60.88 min), temperature(39.93 °C) and frequency(30 kHz). Due to cavitation and super-mixing effects, ultrasonication may make the surface of the film smoother and easier to degrade. After ultrasonication, TPs were protected by the 3D network structure composed of CS and nSA. Ultrasonication improved the antioxidant and antibacterial properties of the film. These results show that ultrasonication is an effective method to improve the properties of films.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jing Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Douglas A Loy
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
8
|
Abdelhedi O, Salem A, Nasri R, Nasri M, Jridi M. Food applications of bioactive marine gelatin films. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|