1
|
Yao X, Cheng Z, Agathokleous E, Wei Y, Feng X, Li H, Zhang T, Li S, Dhawan G, Luo XS. Tetracycline and sulfadiazine toxicity in human liver cells Huh-7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123454. [PMID: 38286259 DOI: 10.1016/j.envpol.2024.123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
As typical antibiotics, tetracycline (TC) and sulfadiazine (SDZ) enter the human body through the food chain. Therefore, it is necessary to understand their individual and combined toxicity. In this study, the effects of TC, SDZ, and their mixture on cell viability, cell membrane damage, liver cell damage, and oxidative damage were evaluated in in vitro assays with human liver cells Huh-7. The results showed cytotoxicity of TC, SDZ, and their mixture, which induced oxidative stress and caused membrane and cell damage. The effect of antibiotics on Huh-7 cells increased with increasing concentration, except for lactate dehydrogenase (LDH) activity that commonly showed a threshold concentration response and cell viability, which commonly showed a biphasic trend, suggesting the possibility of hormetic responses where proper doses are included. The toxicity of TC was commonly higher than that of SDZ when applied at the same concentration. These findings shed light on the individual and joint effects of these major antibiotics on liver cells, providing a scientific basis for the evaluation of antibiotic toxicity and associated risks.
Collapse
Affiliation(s)
- Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhaokang Cheng
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, 210008, China
| | - Evgenios Agathokleous
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yaqian Wei
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xinyuan Feng
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hanhan Li
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuting Li
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
3
|
Electrochemical Biosensor Designed to Distinguish Tetracyclines Derivatives by ssDNA Aptamer Labelled with Ferrocene. Int J Mol Sci 2022; 23:ijms232213785. [PMID: 36430261 PMCID: PMC9698302 DOI: 10.3390/ijms232213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Controlling food safety and preventing the growing spread of antibiotics into food products have been challenging problems for the protection of human health. Hence, the development of easy-to-use, fast, and sensitive analytical methods for the detection of antibiotics in food products has become one of the priorities in the food industry. In this paper, an electrochemical platform based on the ssDNA aptamer for the selective detection of tetracycline has been proposed. The aptasensor is based on a thiolated aptamer, labelled with ferrocene, which has been covalently co-immobilized onto a gold electrode surface with 6-mercaptohexan-1-ol. The changes in the redox activity of ferrocene observed on the aptamer-antibiotics interactions have been the basis of analytical signal generation registered by square-wave voltammetry. Furthermore, the detection of tetracycline-spiked cow milk samples has been successfully demonstrated. The limits of detection (LODs) have been obtained of 0.16 nM and 0.20 nM in the buffer and spiked cow milk, respectively, which exceed the maximum residue level (225 nM) more than 1000 times. The proposed aptasensor offers high selectivity for tetracycline against other structurally related tetracycline derivatives. The developed biosensor characterized by simplicity, a low detection limit, and high reliability shows practical potential for the detection of tetracycline in animal-origin milk.
Collapse
|
4
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
5
|
4-ethyphenol detection in wine by fullerene modified screen-printed carbon electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|