1
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
2
|
Asghar L, Sahar A, Khan MI, Shahid M. Fabrication and Characterization of Chitosan and Gelatin-Based Antimicrobial Films Incorporated with Different Essential Oils. Foods 2024; 13:1796. [PMID: 38928738 PMCID: PMC11202491 DOI: 10.3390/foods13121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This study was performed to check the effect of different essential oils on chitosan and gelatin-based antimicrobial films. Films prepared from biopolymers contain better mechanical strength but lack in moisture barrier properties. In order to increase the moisture barrier properties of chitosan and gelatin-based films in the current research work, different essential oils, i.e., thyme, cinnamon, basil, ginger, and cumin, at varying concentrations (1.0, 1.5, and 2.0%) were incorporated. Moreover, the concentrations of glycerol (plasticizer) and emulsifier (Tween 20) were kept constant to maintain homogeneity in the research. Antimicrobial films composed of gelatin and chitosan infused with essential oils were evaluated for their physicochemical (emulsion stability, particle size, and viscosity), FT-IR, microstructural (scanning electron microscopy), moisture barrier (water vapor permeability), and antimicrobial properties (E. coli, Salmonella, and S. aureus). Study outcomes elucidated significant variations (p < 0.05) as the concentration of essential oil was increased in the film solutions. An increased concentration of essential oil (2.0%) significantly enhanced the moisture barrier properties (1.12 ± 0.03 g.mm/kPa.h.m2). Nevertheless, the tensile strength decreased (38.60 ± 1.4 to 31.50 ± 1.5 MPa) from 1 to 2%. The increase in essential oil concentration in the emulsion-based films also influenced their physicochemical characteristics, such as droplet size, viscosity, and emulsion stability. At lower concentrations (1.0%), films exhibited a uniform microstructure but lacked moisture barrier properties. Antimicrobial properties against E. coli, Salmonella, and S. aureus showed an increased inhibition effect as the concentration of essential oil was increased. Of the essential oil-based films, ginger- and basil-based films showed greater inhibition effects as compared to the other essential oils. Overall, antimicrobial films containing a 1.5% concentration of ginger and basil oil showed better results as compared to the other treatments for mechanical, moisture barrier, and antimicrobial properties, while films with a 2.0% oil concentration showed better antimicrobial and moisture barrier properties but lacked in mechanical properties. Essential oil-based antimicrobial films have prospective applications in foods, specifically in fresh and processed food items such as seafood, meat, chicken, and sausages.
Collapse
Affiliation(s)
- Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Campolina GA, Cardoso MDG, Freire CS, Caetano ARS, Campos ABDS, Ferreira VRF, Alves E, Nelson DL, Batista LR. Essential oils from Cuminum cyminum and Laurus nobilis and their principal constituents: evaluation of antifungal and antimycotoxigenic potential in Aspergillus species. FEMS Microbiol Lett 2024; 371:fnae081. [PMID: 39363191 DOI: 10.1093/femsle/fnae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/18/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
The antifungal and antimycotoxigenic activities of the essential oils (EO) from Cuminum cyminum and Laurus nobilis, and their respective principal compounds, cuminaldehyde and 1,8-cineole, were evaluated against fungi of the genus Aspergillus: A. carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. The antifungal activity was determined by the contact method and the mycelial growth of the fungi was evaluated. Scanning electron microscopic (SEM) images were obtained to suggest modes of action of the compounds analysed. The antimycotoxigenic activity was determined by high-performance liquid chromatograph. Aspergillus carbonarius was completely inhibited by cumin EO (500 µl l-1), by laurel EO and by cuminaldehyde (5000 µl l-1). The cumin EO (500 µl l-1) completely inhibited the growth of A. niger. All the samples inhibited the mycelial growth of A. ochraceus, especially cumin EO and cuminaldehyde (250 µl l-1). Aspergillus westerdijkiae was completely inhibited by cumin EO and cuminaldehyde (1000 µl l-1), by laurel EO and 1,8-cineole (10 000 µl l-1). A decrease in the production of ochratoxin A (OTA) was observed post-treatment, except in A. ochraceus, only inhibited by laurel EO. SEM images showed morphological changes in fungal structures and spore inhibition post-treatment. The results confirmed the antifungal and antimycotoxigenic effect of EO and their principal constituents on fungi evaluated.
Collapse
Affiliation(s)
- Gabriela Aguiar Campolina
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Maria das Graças Cardoso
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Carolina Salles Freire
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | | | | | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Luis Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| |
Collapse
|
4
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
5
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. COATINGS 2022. [DOI: 10.3390/coatings12050644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fresh and processed meat products are staple foods worldwide. However, these products are considered perishable foods and their deterioration depends partly on the inner and external properties of meat. Beyond conventional meat preservation approaches, electrospinning has emerged as a novel effective alternative to develop active and intelligent packaging. Thus, this review aims to discuss the advantages and shortcomings of electrospinning application for quality and safety preservation of meat and processed meat products. Electrospun fibres are very versatile, and their features can be modulated to deliver functional properties such as antioxidant and antimicrobial effects resulting in shelf-life extension and in some cases product quality improvement. Compared to conventional processes, electrospun fibres provide advantages such as casting and coating in the fabrication of active systems, indicators, and sensors. The approaches for improving, stabilizing, and controlling the release of active compounds and highly sensitive, rapid, and reliable responsiveness, under changes in real-time are still challenging for innovative packaging development. Despite their advantages, the active and intelligent electrospun fibres for meat packaging are still restricted to research and not yet widely used for commercial products. Industrial validation of lab-scale achievements of electrospinning might boost their commercialisation. Safety must be addressed by evaluating the impact of electrospun fibres migration from package to foods on human health. This information will contribute into filling knowledge gaps and sustain clear regulations.
Collapse
|