1
|
Silva A, Martins R, Silva V, Fernandes F, Carvalho R, Aires A, Igrejas G, Falco V, Valentão P, Poeta P. Red Grape By-Products from the Demarcated Douro Region: Chemical Analysis, Antioxidant Potential and Antimicrobial Activity against Food-Borne Pathogens. Molecules 2024; 29:4708. [PMID: 39407636 PMCID: PMC11478187 DOI: 10.3390/molecules29194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Wine production is one of the most important agricultural activities. The winemaking process generates a considerable volume of different residues characterized as by-products, such as pomace, seeds, stems, and skins. By-products are rich in polyphenols with antioxidant and antibacterial properties and may act as bacteriostatic or bactericidal agents against food-borne pathogens, improving food safety by enhancing antibiotic efficacy and reducing bacterial resistance. The aim of this study was to evaluate the phenolic composition and antioxidant activity of grape components (skins, seeds, and stems) from three red grape varieties (Periquita, Gamay, and Donzelinho Tinto) and determine their antibacterial activity against antibiotic-resistant bacteria, including Escherichia coli in food-producing animals and Listeria monocytogenes from food products and food-related environments. Ten phenolic compounds were quantified in these red grape varieties, with specific compounds found in different parts of the grape, including phenolic acids and flavonoids. Flavonoids are abundant in seeds and stems, malvidin-3-O-glucoside being the main anthocyanin in skins. The ethanolic extract from the seeds showed in vitro concentration-dependent activity against reactive species like •NO and O2•-. Gamay extract was the most effective, followed by Donzelinho Tinto and Periquita. Extracts showed varying antibacterial activity against Gram-positive and Gram-negative bacteria, with stronger effects on Gram-positive bacteria. L. monocytogenes was more susceptible, while E. coli was limited to three strains. Seeds exhibited the strongest antibacterial activity, followed by stems. The results of our study provide evidence of the potential of grape by-products, particularly seeds, as sources of bioactive compounds with antioxidant and antibacterial properties, offering promising avenues for enhancing food safety and combating antibiotic resistance in food production and related environments.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Martins
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fátima Fernandes
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Rosa Carvalho
- Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Patrícia Valentão
- LAQV-REQUIMTE, Laboratoário de Farmacognosia, Departamento de Quiámica, Faculdade de Farmaácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.M.); (F.F.); (V.F.); (P.V.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Wang B, Wang Y, Chen Y, Sun X, Xu J, Zhu J, Zhang Y. Red-Fleshed Apple Flavonoids Extract Alleviates Male Reproductive Injury Caused by Busulfan in Mice. Nutrients 2023; 15:3288. [PMID: 37571225 PMCID: PMC10420934 DOI: 10.3390/nu15153288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, we analyzed the protective effects of red-fleshed apple flavonoid extracts (RAFEs) on male reproductive injury induced by busulfan, using both in vitro and in vivo models. In the cell-based experiments, RAFEs significantly improved cell viability and proliferation rates compared to control groups. Similarly, in vivo testing with male mice showed that RAFEs and whole apple flavonoid extracts (WAFEs) enhanced various biochemical and liver function-related indicators in the testes; however, RAFEs demonstrated superior efficacy in mitigating testicular damage. Through immunohistochemistry, qRT-PCR, and Western blotting, we found that RAFEs notably enhanced the expression of spermatogenesis-related genes. Moreover, RAFEs increased the expression of oxidative stress- and apoptosis-related genes, thereby effectively reducing oxidative damage in the testes. These findings highlight the potential of RAFEs as natural agents for the prevention and treatment of male reproductive injury, paving the way for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
3
|
Aly A, Maraei R, Rezk A, Diab A. Phytochemical constitutes and biological activities of essential oil extracted from irradiated caraway seeds ( Carum carvi L.). Int J Radiat Biol 2023; 99:318-328. [PMID: 35549975 DOI: 10.1080/09553002.2022.2078004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Essential oils (EOs) obtained from spices, herbs, and medicinal plants are well known in traditional medicine and are an area of interest due to their various biological activities. Therefore, the present study investigates the chemical composition, phytochemical properties, as well as the biological activity of EOs, recovered from un-irradiated and irradiated (2.5, 5, and 10 kGy) caraway seeds. MATERIALS AND METHODS Carum carvi L. seeds were irradiated with gamma irradiation at dose levels 2.5, 5, and 10 kGy, then EOs were recovered from all the samples. The chemical composition, phenols, and flavonoids content were evaluated. As well, antimicrobial and antitumor activities against the two cell lines [colorectal adenocarcinoma (Caco-2) and liver cancer (HepG-2)] were investigated. RESULTS The results indicated the percentage of oil increased by radiation, especially a dose of 10 kGy, which gave the highest percentage (3.50%) compared to the control. Also, the Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed the presence of 26 compounds in the essential oil extracts. The main constituent of caraway seeds EOs was Carvone followed by Limonene. According to the results, there was an increase in the content of phenols and flavonoids by using gamma rays compared with control, the maximum increase was observed at dose level 10 kGy (13.70 and 7.38 mg/g oil, respectively) followed by 5 kGy (11.20 and 5.86 mg/g oil, respectively). The antioxidant properties of the caraway essential oils were increased by increasing the irradiation dose level (2.5-10 kGy) analyzed by DPPH radical and metal chelating activity. Caraway essential oils have an antimicrobial action against Gram-positive and Gram-negative bacteria as well as fungi. The antimicrobial activity was increased as the irradiation dose was raised and the10 kGy dose was more effective in suppressing the growth of bacteria and fungi. Additionally, the caraway essential oils have anticancer activity against the two cell lines studied; colorectal adenocarcinoma (Caco-2) and liver cancer cell line (HepG-2) as reduced the cell viability and density. CONCLUSION The 10 kGy dose was more effective for oil yield, phenols, flavonoids, and antioxidant activity as well as antibacterial and antifungal activities. Furthermore, the caraway essential oils indicated anticancer activity against the two cell lines studied; colorectal adenocarcinoma (Caco-2) and liver cancer cell line (HepG-2) as reduced the cell viability and density. So caraway could be considered an important herb with multiple therapeutic uses.
Collapse
Affiliation(s)
- Amina Aly
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rabab Maraei
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Rezk
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), Cairo, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), Cairo, Egypt
| |
Collapse
|
4
|
Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods 2022; 11:foods11131948. [PMID: 35804762 PMCID: PMC9265449 DOI: 10.3390/foods11131948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
The biological function of bioactive compounds found in plant by-products has triggered expanded interest in recent years. This study aims to produce balady bread enriched with dietary fiber, mineral, and phenolic compounds by the addition of grape seeds powder (GSP) at different levels (5%, 10%, and 15% as a partial substitute for wheat flour). The results show that balady bread (Bb) and grape seed powder have ash contents of about 1.97% and 3.04%, lipid contents of 3.22% and 17.15%, protein contents of 11.16% and 12.10%, fiber contents of 1.06% and 44.90%, and carbohydrates contents of 56.52% and 29%, respectively. Moreover, grape seed powder contains a higher level of iron and zinc about 30.02 and 9.43 mg/kg than the Bb control sample which contains about 8.19 and 7.25 mg/kg respectively. The findings revealed that balady bread fortified with grape seed powder contains a high amount of total polyphenols content (TPC), total flavonoid content (TF), and antioxidant capacity. The farinograph test results showed that increasing the GSP concentration in the flour above 10% reduced dough development, stability, and farinograph quality number. The addition of GSP to wheat flour accelerated the dough’s water absorption and mixing tolerance. Grape seed incorporation levels up to 10% (w/w) had no negative effect on dough rheological performance. The sensory evaluation of bread showed that samples that were enriched with grape seeds powder at up to 10% had good quality. Based on these findings, it is recommended to replace up to 10% GSP in the manufacturing of fortified balady bread with satisfactory physical and sensory characteristics and high TPC and antioxidant activity.
Collapse
|