1
|
Guo Z, Chen X, Zhang Y, Sun C, Jayan H, Majeed U, Watson NJ, Zou X. Dynamic Nondestructive Detection Models of Apple Quality in Critical Harvest Period Based on Near-Infrared Spectroscopy and Intelligent Algorithms. Foods 2024; 13:1698. [PMID: 38890926 PMCID: PMC11171995 DOI: 10.3390/foods13111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Apples are usually bagged during the growing process, which can effectively improve the quality. Establishing an in situ nondestructive testing model for in-tree apples is very important for fruit companies in selecting raw apple materials for valuation. Low-maturity apples and high-maturity apples were acquired separately by a handheld tester for the internal quality assessment of apples developed by our group, and the effects of the two maturity levels on the soluble solids content (SSC) detection of apples were compared. Four feature selection algorithms, like ant colony optimization (ACO), were used to reduce the spectral complexity and improve the apple SSC detection accuracy. The comparison showed that the diffuse reflectance spectra of high-maturity apples better reflected the internal SSC information of the apples. The diffuse reflectance spectra of the high-maturity apples combined with the ACO algorithm achieved the best results for SSC prediction, with a prediction correlation coefficient (Rp) of 0.88, a root mean square error of prediction (RMSEP) of 0.5678 °Brix, and a residual prediction deviation (RPD) value of 2.466. Additionally, the fruit maturity was predicted using PLS-LDA based on color data, achieveing accuracies of 99.03% and 99.35% for low- and high-maturity fruits, respectively. These results suggest that in-tree apple in situ detection has great potential to enable improved robustness and accuracy in modeling apple quality.
Collapse
Affiliation(s)
- Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China;
| | - Xuan Chen
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
| | - Yiyin Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
| | - Chanjun Sun
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
| | - Usman Majeed
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China;
| | - Nicholas J. Watson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.C.); (Y.Z.); (C.S.); (H.J.); (X.Z.)
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
2
|
Pan L, Li H, Zhao J. Improvement of the prediction of a visual apple ripeness index under seasonal variation by NIR spectral model correction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123075. [PMID: 37423101 DOI: 10.1016/j.saa.2023.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Apple ripeness assessment is essential to ensure its post-harvest commercial value, and the visible/near-infrared(NIR) spectral models that are effective in achieving this goal are prone to failure due to seasonal or instrumental factors. This study has proposed a visual ripeness index (VRPI) determined by parameters such as soluble solids, titratable acids, etc., which vary during the ripening period of the apple. The R and RMSE of the index prediction model based on the 2019 sample were 0.871 to 0.913 and 0.184 to 0.213 respectively. The model failed to predict the next two years of the sample, which was effectively addressed by model fusion and correction. For the 2020 and 2021 samples, the revised model improves R by 6.8% and 10.6% and reduces RMSE by 52.2% and 32.2% respectively. The results showed that the global model is adapted to the correction of the VRPI spectral prediction model under seasonal variation.
Collapse
Affiliation(s)
- Liulei Pan
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| | - Hao Li
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| | - Juan Zhao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Gullifa G, Barone L, Papa E, Giuffrida A, Materazzi S, Risoluti R. Portable NIR spectroscopy: the route to green analytical chemistry. Front Chem 2023; 11:1214825. [PMID: 37818482 PMCID: PMC10561305 DOI: 10.3389/fchem.2023.1214825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
There is a growing interest for cost-effective and nondestructive analytical techniques in both research and application fields. The growing approach by near-infrared spectroscopy (NIRs) pushes to develop handheld devices devoted to be easily applied for in situ determinations. Consequently, portable NIR spectrometers actually result definitively recognized as powerful instruments, able to perform nondestructive, online, or in situ analyses, and useful tools characterized by increasingly smaller size, lower cost, higher robustness, easy-to-use by operator, portable and with ergonomic profile. Chemometrics play a fundamental role to obtain useful and meaningful results from NIR spectra. In this review, portable NIRs applications, published in the period 2019-2022, have been selected to indicate starting references. These publications have been chosen among the many examples of the most recent applications to demonstrate the potential of this analytical approach which, not having the need for extraction processes or any other pre-treatment of the sample under examination, can be considered the "true green analytical chemistry" which allows the analysis where the sample to be characterized is located. In the case of industrial processes or plant or animal samples, it is even possible to follow the variation or evolution of fundamental parameters over time. Publications of specific applications in this field continuously appear in the literature, often in unfamiliar journal or in dedicated special issues. This review aims to give starting references, sometimes not easy to be found.
Collapse
Affiliation(s)
- G. Gullifa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - L. Barone
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - E. Papa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - A. Giuffrida
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - S. Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - R. Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| |
Collapse
|
4
|
Grabska J, Beć KB, Ueno N, Huck CW. Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review. Foods 2023; 12:foods12101946. [PMID: 37238763 DOI: 10.3390/foods12101946] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world's most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas.
Collapse
Affiliation(s)
- Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nami Ueno
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Intelligent Evaluation of Stone Cell Content of Korla Fragrant Pears by Vis/NIR Reflection Spectroscopy. Foods 2022; 11:foods11162391. [PMID: 36010391 PMCID: PMC9407552 DOI: 10.3390/foods11162391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Stone cells are a distinctive characteristic of pears and their formation negatively affects the quality of the fruit. To evaluate the stone cell content (SCC) of Korla fragrant pears, we developed a Vis/NIR spectroscopy system that allowed for the adjustment of the illuminating angle. The successive projective algorithm (SPA) and the Monte Carlo uninformative variable elimination (MCUVE) based on the sampling algorithm were used to select characteristic wavelengths. The particle swarm optimization (PSO) algorithm was used to optimize the combination of penalty factor C and kernel function parameter g. Support vector regression (SVR) was used to construct the evaluation model of the SCC. The SCC of the calibration set ranged from 0.240% to 0.657% and that of the validation set ranged from 0.315% to 0.652%. The SPA and MCUVE were used to optimize 57 and 83 characteristic wavelengths, respectively. The combinations of C and g were (6.2561, 0.2643) and (2.5133, 0.1128), respectively, when different characteristic wavelengths were used as inputs of SVR, indicating that the first combination had good generalization ability. The correlation coefficients of the SPA-SVR model after pre-processing the standardized normal variate (SNV) for both sets were 0.966 and 0.951, respectively. These results show that the SNV-SPA-SVR model satisfied the requirements of intelligent evaluation of SCC in Korla fragrant pears.
Collapse
|