1
|
Luo W, Li X, Zhou Y, Xu D, Qiao Y. Correlation between bone mineral density and type 2 diabetes mellitus in elderly men and postmenopausal women. Sci Rep 2024; 14:15078. [PMID: 38956260 PMCID: PMC11219895 DOI: 10.1038/s41598-024-65571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The relationship between bone mineral density and type 2 diabetes is still controversial. The aim of this study is to investigate the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) in elderly men and postmenopausal women. The participants in this study included 692 postmenopausal women and older men aged ≥ 50 years, who were divided into the T2DM group and non-T2DM control group according to whether or not they had T2DM. The data of participants in the two groups were collected from the inpatient medical record system and physical examination center systems, respectively, of the Tertiary Class A Hospital. All data analysis is performed in SPSS Software. Compared with all T2DM group, the BMD and T scores of lumbar spines 1-4 (L1-L4), left femoral neck (LFN) and all left hip joints (LHJ) in the non-T2DM group were significantly lower than those in the T2DM group (P < 0.05), and the probability of major osteoporotic fracture in the next 10 years (PMOF) was significantly higher than that in T2DM group (P < 0.001). However, with the prolongation of the course of T2DM, the BMD significantly decreased, while fracture risk and the prevalence of osteoporosis significantly increased (P < 0.05). We also found that the BMD of L1-4, LFN and LHJ were negatively correlated with homeostatic model assessment-insulin resistance (HOMA-IR) (P = 0.028, P = 0.01 and P = 0.047, respectively). The results also showed that the BMD of LHJ was positively correlated with indirect bilirubin (IBIL) (P = 0.018). Although the BMD was lower in the non-T2DM group than in the T2DM group, the prolongation of the course of T2DM associated with the lower BMD. And the higher prevalence of osteoporosis and fracture risk significantly associated with the prolongation of the course of T2DM. In addition, BMD was significantly associated with insulin resistance (IR) and bilirubin levels in T2DM patients.Registration number: China Clinical Trials Registry: MR-51-23-051741; https://www.medicalresearch.org.cn/search/research/researchView?id=c0e5f868-eca9-4c68-af58-d73460c34028 .
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology, Nanchong Central Hospital, Nanchong, Sichuan, China.
- Department of Endocrinology, People's Hospital of Leshan, Leshan, Sichuan, China.
| | - Xingzhi Li
- Department of Hepatobiliary Surgery, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yao Zhou
- Department of Endocrinology, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Dan Xu
- Department of Endocrinology, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Yan Qiao
- Department of Endocrinology, Nanchong Central Hospital, Nanchong, Sichuan, China.
| |
Collapse
|
2
|
Ping Y, Liu J, Wang L, Qiu H, Zhang Y. Research progress on the mechanism of TCM regulating intestinal microbiota in the treatment of DM mellitus. Front Endocrinol (Lausanne) 2024; 15:1308016. [PMID: 38601207 PMCID: PMC11004430 DOI: 10.3389/fendo.2024.1308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
In recent years, with the improvement of people's living standards, the incidence of DM has increased year by year in China. DM is a common metabolic syndrome characterized by hyperglycemia caused by genetic, environmental and other factors. At the same time, long-term suffering from DM will also have an impact on the heart, blood vessels, eyes, kidneys and nerves, and associated serious diseases. The human body has a large and complex gut microbiota, which has a significant impact on the body's metabolism. Research shows that the occurrence and development of DM and its complications are closely related to intestinal microbiota. At present, western medicine generally treats DM with drugs. The hypoglycemic effect is fast and strong, but it can have a series of side effects on the human body. Compared with western medicine, Chinese medicine has its unique views and methods in treating DM. TCM can improve symptoms and treat complications by improving the imbalance of microbiota in patients with DM. Its characteristics of health, safety, and reliability are widely accepted by the general public. This article reviews the relationship between intestinal microbiota and DM, as well as the mechanism of TCM intervention in DM by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Yang Ping
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, Heilongjiang, China
| | - Jianing Liu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hongbin Qiu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, Heilongjiang, China
| |
Collapse
|
3
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
4
|
Chen W, Yin H, Xiao J, Liu W, Qu Q, Gong F, He X. The effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass in type 2 diabetes rats. Nutr Diabetes 2022; 12:51. [PMID: 36564376 PMCID: PMC9789110 DOI: 10.1038/s41387-022-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass (RYGB) in rat models with type 2 diabetes mellitus (T2DM). METHODS Twenty aged Goto-Kakizaki rats were randomly assigned into RYGB-A group and sham RYGB (SR-A) group, and 10 adult Goto-Kakizaki rats also accept RYGB procedures (RYGB-Y). Glucose metabolism, resting energy expenditure (REE), glucagon-like peptide-1 (GLP-1) and total bile acid level were measured. RESULTS RYGB could significantly improve glucose metabolism in aged diabetic rats. The fasting blood glucose level in the RYGB-A group decreased from 15.8 ± 1.1 mmol/l before surgery to 12.3 ± 1.5 mmol/l 16 weeks after surgery (P < 0.01), and the AUCOGTT value decreased from 2603.9 ± 155.4 (mmol/l) min to 2299.9 ± 252.8 (mmol/l) min (P = 0.08). The decrease range of fasting blood glucose in the RYGB-A group was less than that in the RYGB-Y group (20.5% ± 6.5% vs. 40.6% ± 10.6%, P < 0.01), so is the decrease range of AUCOGTT value (11.6% ± 14.8% vs. 38.5% ± 8.3%, P < 0.01). Moreover, at the 16th postoperative week, the increase range of REE of the RYGB-A group was lower than that of the RYGB-Y group (15.3% ± 11.1% vs. 29.1% ± 12.1%, P = 0.04). The increased range of bile acid of the RYGB-A group was less than that of the RYGB-Y group (80.2 ± 59.3 % vs.212.3 ± 139.0 %, P < 0.01). The GLP-1 level of the RYGB-A group was less than that of the RYGB-Y group (12.8 ± 3.9 pmol/L vs. 18.7 ± 5.6 pmol/L, P = 0.02). There was no significant difference between the RYGB-A group and the RYGB-Y group in the level of the triiodothyronine level. CONCLUSIONS RYGB could induce a glucose metabolism improvement in aged diabetic rats, and aging might moderate the effect of RYGB.
Collapse
Affiliation(s)
- Weijie Chen
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Haixin Yin
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Jianchun Xiao
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Wei Liu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Qiang Qu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Fengying Gong
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, PR China.
| |
Collapse
|
5
|
Chen W, Yin H, Zhang N, Liu W, Qu Q, Xiao J, Gong F, He X. Improvement of Postprandial Lipid Metabolism After Ileal Transposition in Non-obese Diabetic Rats. Obes Surg 2021; 31:1572-1578. [PMID: 33409975 DOI: 10.1007/s11695-020-05158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ileal transposition (IT) could reduce obesity and improve type 2 diabetes mellitus (T2DM). The main aim of our study was to investigate lipid metabolism changes in T2DM rats after IT without a weight reduction effect. METHODS Thirty male diabetic rats were randomly divided into IT, sham IT (SI), and control groups. The levels of plasma cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TGs), and bile acid were measured. After sacrifice, the white adipose tissue, brown adipose tissue and liver were weighed. RESULTS IT induced significant improvement in glucose and lipid metabolism. There were no significant differences in the levels of cholesterol (P = 0.87), HDL (P = 0.70), LDL (P = 0.96), or TGs (P = 0.97) among the groups before surgery. After IT, the levels of cholesterol (P = 0.019), LDL (P = 0.004), and TGs (P < 0.001) were lower than those in the SI and control groups, while the level of HDL was not significantly different compared to those of the other groups (P = 0.437). Higher bile acid level (P = 0.001), lower white adipose tissue/total body weight ratio (P < 0.001), and lower liver/total body weight ratio (P = 0.003) were found in the IT group. The BAT/total body weight ratio in the IT group was higher than that in the SI or control groups (P = 0.002). CONCLUSIONS IT could improve lipid metabolism in diabetic rats.
Collapse
Affiliation(s)
- Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Haixin Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Ning Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Qiang Qu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Changes of Resting Energy Expenditure in Type 2 Diabetes Rats After Roux-en-Y Gastric Bypass. Obes Surg 2020; 30:2994-3000. [PMID: 32338325 DOI: 10.1007/s11695-020-04638-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Optimization of a Technique to Standardize the Rodent Roux-En-Y Gastric Bypass Model and Troubleshooting of Postoperative Failures. Obes Surg 2020; 29:1681-1689. [PMID: 30810973 DOI: 10.1007/s11695-019-03789-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Rodent models are required in studies on the mechanism of Roux-en-Y gastric bypass (RYGB). However, the construction of the model is hard, and there are various causes of death after surgery in rats. METHODS RYGB models with procedures containing a series of anatomic landmark were established in rats. Optimized procedures during surgery, possible complications after surgery, and corresponding solutions were studied. RESULTS With the introduction of perioperative nursing and optimized surgery procedures, less time-consuming surgeries were performed and higher survival rates were achieved. Trouble-shooting data based on death time points are listed and discussed for various causes of failure. CONCLUSIONS This study provides practical suggestions for investigators to perform RYGB surgery on rats. The troubleshooting suggestions will help operators to efficiently identify problems in their procedures.
Collapse
|
8
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|