1
|
Kashihara H, Okikawa S, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, Takasu C, Nishiyama M, Zushi M, Shimada M. Impact of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:210-218. [PMID: 39462554 DOI: 10.2152/jmi.71.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION We investigated the effect of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass (DJB). METHODS Study 1:The effect of TU-100 on diabetic rats was investigated. Rats were sacrificed after receiving TU-100 for one week. Study 2:The effect of TU-100 on DJB was investigated. Rats in the DJB and TU-100 treated DJB groups were sacrificed 24 hours postoperation to evaluate blood glucose, cytokine expression, and gut microbiome. RESULTS Study 1:TU-100 did not affect glucose or body weight. TU-100 suppressed intestinal inflammation and modified the gut microbiome. Specifically, Bifidobacterium and Blautia were increased, and Turicibacter were decreased in this group. Study 2:Both DJB and TU-100 treated DJB rats showed lower blood glucose at 24 hours postoperation than at preoperation. Cytokine expression in the liver and small intestine of the TU-100 treated DJB group was significantly lower than that of the DJB group. The gut microbiome composition in TU-100 treated DJB rats was altered. In particular, Bifidobacterium and Blautia were increased in this group. CONCLUSION DJB suppressed blood glucose during the early postoperative period. TU-100 may enhance the anti-diabetic effect of metabolic surgery by changing the gut microbiome and suppressing inflammation in the early postoperative period. J. Med. Invest. 71 : 210-218, August, 2024.
Collapse
Affiliation(s)
| | - Shohei Okikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsue Nishiyama
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Makoto Zushi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Du L, Lei X, Wang J, Wang L, Zhong Q, Fang X, Li P, Du B, Wang Y, Liao Z. Lipopolysaccharides derived from gram-negative bacterial pool of human gut microbiota promote inflammation and obesity development. Int Rev Immunol 2021; 41:45-56. [PMID: 34726960 DOI: 10.1080/08830185.2021.1996573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or "low-grade" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yutao Wang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China.,College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| |
Collapse
|
3
|
Jin Z, Chen K, Zhou Z, Peng W, Liu W. Roux-en-Y gastric bypass potentially improved intestinal permeability by regulating gut innate immunity in diet-induced obese mice. Sci Rep 2021; 11:14894. [PMID: 34290269 PMCID: PMC8295358 DOI: 10.1038/s41598-021-94094-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) has been demonstrated to be the most effective treatment for morbid obesity, yet the impact of RYGB on intestinal permeability is not fully known. In this work, we subjected obese mice to RYGB and sham operation procedures. Serum lipopolysaccharide (LPS) level, inflammatory cytokines and intestinal permeability were measured at 8 weeks post surgery. In contrast to sham surgery, RYGB reduced body weight, improved glucose tolerance and insulin resistance, and decreased serum levels of LPS, IL6 and TNFα. Intestinal permeability of the common limb and colon was significantly improved in the RYGB group compared to the sham group. The mRNA levels of IL1β, IL6, and TLR4 in the intestine were significantly decreased in the RYGB group compared with the sham group. The expression levels of intestinal islet-derived 3β (REG3β), islet-derived 3γ (REG3γ) and intestinal alkaline phosphatase (IAP) were higher in the RYGB group than in the sham group. In conclusion, in a diet-induced obesity (DIO) mouse model, both decreased intestinal permeability and attenuated systemic inflammation after RYGB surgery were associated with improved innate immunity, which might result from enhanced production of IAP and antimicrobial peptides.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Kai Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhe Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Weihui Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|