1
|
Geng C, Dong Z, Zhang T, Yang Z, Xu Z, Liang S, Ding X. Advances in atmospheric pressure plasma-based optical emission spectrometry for the analysis of heavy metals. Talanta 2024; 270:125634. [PMID: 38215585 DOI: 10.1016/j.talanta.2024.125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Over the past decade, miniaturized optical emission spectrometry (OES) systems utilizing atmospheric pressure plasmas (APPs) as radiation sources have exhibited impressive capabilities in trace heavy metal analysis. As the core of the analytical system, APPs sources possess unique properties such as compact size, light weight, low energy requirement, ease of fabrication, and relatively low manufacturing cost. This critical review focuses on recent progress of APP-based OES systems employed for the determination of heavy metals. Influences of technical details including the sample introduction manner, the sampling volume, the sample flow rate, the pH of the solutions on the plasma stability and the intensity of analytical signals are comprehensively discussed. Furthermore, the review emphasizes the analytical challenges faced by these techniques and highlights the opportunities for further development in the field of heavy metal detection.
Collapse
Affiliation(s)
- Chaoqun Geng
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zheng Dong
- Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao, 266002, China
| | - Tiantian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Zhao Yang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Zewen Xu
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Shuai Liang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Angyus SB, Senila M, Frentiu T, Ponta M, Frentiu M, Covaci E. In-situ Diffusive Gradients in thin-films passive sampling coupled with ex-situ small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry as green and white method for the simultaneous determination of labile species of toxic elements in surface water. Talanta 2023; 259:124551. [PMID: 37075518 DOI: 10.1016/j.talanta.2023.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
This study presents for the first time the coupling between in-situ Diffusive Gradient in Thin-film (DGT) passive sampling technique and ex-situ small-sized instrumentation based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry (SSETV-μCCP-OES) for the simultaneous determination of Cd, Pb, Cu, Zn and Hg in surface water. Unique features of the DGT-SSETV-μCCP-OES are low power and low Ar consumption for plasma generation (15 W, 150 mL min-1) and significant improvement of the detection limits following DGT passive sampling. The new method was validated in terms of river water analysis in comparison with graphite furnace atomic absorption spectrometry and thermal decomposition atomic absorption spectrometry. Combining the abilities of preconcentration by in-situ Chelex-DGT passive sampling with plasma microtorch equipped with a low resolution microspectrometer provided multielemental simultaneous determination with detection limits of (μg L-1) 0.01 (Cd, Zn and Hg), 0.02 (Cu) and 0.07 (Pb) in water, at least one order of magnitude better than using grab sampling without preconcentration. It was possible the quantification of labile fraction of priority hazardous metals (Cd, Pb) in river water below the instrumental limits of detection (μg L-1) of 0.12 and 0.80 obtained in SSETV-μCCP-OES without DGT sampling. The precision of the method was in the range 15.3-22.4% (combined uncertainty), while the accuracy was 95-103% and trueness of 27-33% (expanded uncertainty, k = 2). The DGT-SSETV-μCCP-OES coupling proved to be an ideal and powerful tool for surface water analysis in compliance with green and white analytical chemistry concepts. The application of the RGB-12 algorithm provided very good red/green (AGREEprep)/blue/white scores (%) of 100/80/98/93, determined primarily by in-situ DGT passive sampling, very good detection limits and cost-effective SSETV-μCCP-OES instrumentation.
Collapse
Affiliation(s)
- Simion Bogdan Angyus
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Marin Senila
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Tiberiu Frentiu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Michaela Ponta
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Maria Frentiu
- National Institute for Research and Development of Optoelectronics INOE 2000 INCD Bucharest, Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca, Romania
| | - Eniko Covaci
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Simultaneous Determination of As, Bi, Sb, Se, Te, Hg, Pb and Sn by Small-Sized Electrothermal Vaporization Capacitively Coupled Plasma Microtorch Optical Emission Spectrometry Using Direct Liquid Microsampling. Molecules 2021; 26:molecules26092642. [PMID: 33946509 PMCID: PMC8124486 DOI: 10.3390/molecules26092642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
The simultaneous determination of chemical vapor-generating elements involving derivatization is difficult even by inductively coupled plasma optical emission spectrometry or mass spectrometry. This study proposes a new direct liquid microsampling method for the simultaneous determination of As, Bi, Se, Te, Hg, Pb, and Sn, using a fully miniaturized set-up based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. The method is cost-effective, free from non-spectral interference, and easy to run by avoiding derivatization. The method involves the vaporization of analytes from the 10 µL sample and recording of episodic spectra generated in low-power (15 W) and low-Ar consumption (150 mL min−1) plasma microtorch interfaced with low-resolution microspectrometers. Selective vaporization at 1300 °C ensured the avoidance of non-spectral effects and allowed the use of external calibration. Several spectral lines for each element even in the range 180–210 nm could be selected. Generally, this spectral range is examined with large-scale instrumentation. Even in the absence of derivatization, the obtained detection limits were low (0.02–0.75 mg kg−1) and allowed analysis of environmental samples, such as cave and river sediments. The recovery was in the range of 86–116%, and the accuracy was better than 10%. The method is of general interest and could be implemented on any miniaturized or classical laboratory spectrometric instrumentation.
Collapse
|
4
|
Interference-free, green microanalytical method for total mercury and methylmercury determination in biological and environmental samples using small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. Talanta 2020; 217:121067. [PMID: 32498880 DOI: 10.1016/j.talanta.2020.121067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023]
Abstract
An analytical method for the quantification of total Hg and CH3Hg+ in biological tissues (fish, mushroom) and water sediment was developed based on small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry using a low-resolution microspectrometer as detector. Sample preparation was carried out according to the procedure recommended by JRC Technical Report of European Commission for the determination of CH3Hg+ in seafood and adapted by us for lower consumption of reagents. Amounts of 0.1 - 0.5 g sample were subjected to extraction in 5 ml of 47% HBr then CH3Hg+ was extracted in 2 × 1 ml toluene and back-extracted in 2 ml aqueous solution of 1% l-cysteine. Total Hg/CH3Hg+ were quantified in 10 μl of acidic extract/l-cysteine solution after electrothermal vaporization and measurement of 253.652 nm Hg signal in the episodic emission spectra. Under the optimal working conditions of system (70 °C sample drying, 1300 °C sample vaporization, 10 W plasma power and 150 ml min-1 Ar flow) the limits of detection were 7.0 μg kg-1 total Hg and 3.5 μg kg-1 CH3Hg+. Comparison of slopes in external calibration and standard addition procedure revealed the lack of non-spectral interferences of multimineral matrix, so that the calibration against Hg2+ standards was adopted. Pooled recovery of total mercury/methylmercury was 101 ± 7%/100 ± 7%, while precision assessed from measurements of real samples was in the range 1.6-9.6%/2.7-12.8%. The proposed method validated according to Eurachem Guide 2014 is selective and complies with demands in European legislation (Decisions 657/2002; 333/2007; 836/2011) and Association of Official Analytical Chemists Guide in terms of performances for food control. The method displays a high degree of greenness by circumventing cold vapor generation, use of small amounts of reagents and full-miniaturized instrumentation resulting in low analytical costs without reducing results quality. Besides, the method is simple and rapid, since it uses external calibration curves prepared from Hg2+standard solutions both for total Hg and CH3Hg+ determination.
Collapse
|