1
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
2
|
Antony FM, Wasewar KL. The Sustainable Approach of Process Intensification in Biorefinery Through Reactive Extraction Coupled with Regeneration for Recovery of Protocatechuic Acid. Appl Biochem Biotechnol 2024; 196:1570-1591. [PMID: 37436543 DOI: 10.1007/s12010-023-04659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
In the current scenario, where environmental degradation, global climate change, and the depletion of petroleum feedstock pose significant challenges, the chemical industry seeks sustainable alternatives for manufacturing chemicals, fuels, and bioplastics. Biorefining processes that integrate biomass conversion and microbial fermentation have emerged as preferred approaches to create value-added compounds. However, commercializing biorefinery products is hindered by dilute concentrations of final products and the demand for high purity goods. To address these challenges, effective separation and recovery procedures are essential to minimize costs and equipment size. This article proposes a biorefinery route for the production of protocatechuic acid (PCA) by focusing on in situ PCA separation and purification from fermentation broth. PCA is a significant phenolic molecule with numerous applications in the pharmaceutical sector for its anti-inflammatory, antiapoptotic, and antioxidant properties, as well as in the food, polymer, and other chemical industries. The chemical approach is predominantly used to produce PCA due to the cost-prohibitive nature of natural extraction techniques. Reactive extraction, a promising technique known for its enhanced extraction efficiency, is identified as a viable strategy for recovering carboxylic acids compared to conventional methods. The extraction of PCA has been explored using various solvents, including natural and conventional solvents, such as aminic and organophosphorous extractants, as well as the potential utilization of ionic liquids as green solvents. Additionally, back extraction techniques like temperature swing and diluent composition swing can be employed for reactive extraction product recovery, facilitating the regeneration of the extractant from the organic phase. By addressing the challenges associated with PCA production and usage, particularly through reactive extraction, this proposed biorefinery route aims to contribute to a more sustainable and environmentally friendly chemical industry. The incorporation of PCA in the biorefinery process allows for the utilization of this valuable compound with diverse industrial applications, thus providing an additional incentive for the development and optimization of efficient separation techniques.
Collapse
Affiliation(s)
- Fiona Mary Antony
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Kailas L Wasewar
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India.
| |
Collapse
|
3
|
Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, Yusuf M, Kamyab H, Chelliapan S. Evaluating ionic liquids for its potential as eco-friendly solvents for naproxen removal from water sources using COSMO-RS: Computational and experimental validation. ENVIRONMENTAL RESEARCH 2023; 231:116058. [PMID: 37178749 DOI: 10.1016/j.envres.2023.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
Collapse
Affiliation(s)
- Huma Warsi Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
| | | | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia; Center of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mohammed K Al Mesfer
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mohd Danish
- Chemical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary Research Centre for Renewable Energy and Power Systems (IRC-REPS) Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shreshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Blaga AC, Dragoi EN, Tucaliuc A, Kloetzer L, Cascaval D. Folic Acid Ionic-Liquids-Based Separation: Extraction and Modelling. Molecules 2023; 28:molecules28083339. [PMID: 37110572 PMCID: PMC10144844 DOI: 10.3390/molecules28083339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Folic acid (vitamin B9) is an essential micronutrient for human health. It can be obtained using different biological pathways as a competitive option for chemical synthesis, but the price of its separation is the key obstacle preventing the implementation of biological methods on a broad scale. Published studies have confirmed that ionic liquids can be used to separate organic compounds. In this article, we investigated folic acid separation by analyzing 5 ionic liquids (CYPHOS IL103, CYPHOS IL104, [HMIM][PF6], [BMIM][PF6], [OMIM][PF6]) and 3 organic solvents (heptane, chloroform, and octanol) as the extraction medium. The best obtained results indicated that ionic liquids are potentially valuable for the recovery of vitamin B9 from diluted aqueous solutions as fermentation broths; the efficiency of the process reached 99.56% for 120 g/L CYPHOS IL103 dissolved in heptane and pH 4 of the aqueous folic acid solution. Artificial Neural Networks (ANNs) were combined with Grey Wolf Optimizer (GWO) for modelling the process, considering its characteristics.
Collapse
Affiliation(s)
- Alexandra Cristina Blaga
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Alexandra Tucaliuc
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Lenuta Kloetzer
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Dan Cascaval
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
5
|
Devi M, Moral R, Thakuria S, Mitra A, Paul S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS OMEGA 2023; 8:9702-9728. [PMID: 36969397 PMCID: PMC10034849 DOI: 10.1021/acsomega.2c07684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) are multicomponent designer solvents that exist as stable liquids over a wide range of temperatures. Over the last two decades, research has been dedicated to developing noncytotoxic, biodegradable, and biocompatible DESs to replace commercially available toxic organic solvents. However, most of the DESs formulated until now are hydrophilic and disintegrate via dissolution on coming in contact with the aqueous phase. To expand the repertoire of DESs as green solvents, hydrophobic DESs (HDESs) were prepared as an alternative. The hydrophobicity is a consequence of the constituents and can be modified according to the nature of the application. Due to their immiscibility, HDESs induce phase segregation in an aqueous solution and thus can be utilized as an extracting medium for a multitude of compounds. Here, we review literature reporting the usage of HDESs for the extraction of various organic compounds and metal ions from aqueous solutions and absorption of gases like CO2. We also discuss the techniques currently employed in the extraction processes. We have delineated the limitations that might reduce the applicability of these solvents and also discussed examples of how DESs behave as reaction media. Our review presents the possibility of HDESs being used as substitutes for conventional organic solvents.
Collapse
Affiliation(s)
| | | | | | | | - Sandip Paul
- . Phone: +91-361-2582321. Fax: +91-361-2582349
| |
Collapse
|
6
|
Antony FM, Wasewar KL. Ionic liquids as green solvents in process industry for reaction and separation: emphasizing on protocatechuic acid recovery. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2185519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Fiona Mary Antony
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, India
| | - Kailas L. Wasewar
- Chemical Engineering Department, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, India
| |
Collapse
|
7
|
Blaga AC, Tucaliuc A, Kloetzer L. Applications of Ionic Liquids in Carboxylic Acids Separation. MEMBRANES 2022; 12:771. [PMID: 36005686 PMCID: PMC9414664 DOI: 10.3390/membranes12080771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.
Collapse
Affiliation(s)
| | - Alexandra Tucaliuc
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Lenuta Kloetzer
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
8
|
Khan HW, Reddy AVB, Bustam MA, Goto M, Moniruzzaman M. Development and optimization of ionic liquid-based emulsion liquid membrane process for efficient recovery of lactic acid from aqueous streams. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Correia DM, Fernandes LC, Fernandes MM, Hermenegildo B, Meira RM, Ribeiro C, Ribeiro S, Reguera J, Lanceros-Méndez S. Ionic Liquid-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2401. [PMID: 34578716 PMCID: PMC8471968 DOI: 10.3390/nano11092401] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.
Collapse
Affiliation(s)
- Daniela Maria Correia
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Liliana Correia Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
| | - Margarida Macedo Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Rafaela Marques Meira
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
10
|
Marták J, Liptaj T, Polakovič M, Schlosser Š. New phosphonium ionic liquid with neodecanoate anion as butyric acid extractant. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Tonova K. Ionic liquid-assisted biphasic systems for downstream processing of fermentative enzymes and organic acids. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Room-temperature ionic liquids (ILs) represent molten salts entirely consisting of ions, usually a charge-stabilized organic cation and an inorganic or organic anion. ILs are liquids at ambient temperature but possess characteristics unusual for the common liquid solvents, such as negligible vapor pressure, high thermal stability and most over the ability to mix and match libraries of cations and anions in order to acquire desirable physical and chemical properties [1]. The opportunity to obtain tunable density, viscosity, polarity and miscibility with common molecular liquids gave rise to a variety of applications of the ILs [2] as environmentally benign solvents, extractants or auxiliaries. In particular, numbers of innovations in the methods for recovery and purification of biologically derived compounds involve ILs used solo or partnered with other liquids in biphasic systems [3,4,5]. It should be noted that the ILs are not intrinsically greener than the traditional solvents, given that their production is usually more resource-demanding, but the inherent potential for recycling and reuse, and for prevention of chemical accidents gives the ILs advantages ahead.
The present chapter provides a state-of-the-art overview on the basic applications of the ILs in biphasic systems aimed at downstream processing of valuable fermentative products, enzymes and organic acids. Main industrially important enzymes, lipases and carbohydrases, are considered and a description of the IL-assisted aqueous biphasic systems (ABS) and the results obtained in view of enzyme yield and purity is made. ILs serve different functions in the ABS, main phase-segregating constituents (mostly in the IL/salt ABS) or adjuvants to the polymer/salt ABS. Enzyme isolation from the contaminant proteins present in the feedstock can be carried out either in the IL-rich or in the salt-rich phase of the ABS and for the reader’s convenience the two options are described separately. Discussion on the factors and parameters affecting the enzyme partitioning in the ABS with ILs guides the reader through the ways by which the interactions between the IL and the enzyme can be manipulated in favor of the enzyme purification through the choice of the ABS composition (IL, salt, pH) and the role of the water content and the IL-rich phase structure.
The second part of the chapter is dedicated to the recovery of fermentative organic acids. Mostly hydrophobic ILs have been engaged in the studies and the biphasic systems thereof are summarized. The systems are evaluated by the extraction efficiency and partition coefficient obtained. Factors and parameters affecting the extraction of organic acids by ILs are highlighted in a way to unravel the extraction mechanism. The choice of IL and pH determines the reactive mechanism and the ion exchange, while the water content and the IL phase structure play roles in physical extraction. Procedures undertaken to enhance the efficiency and to intensify the process of extraction are also looked over.
Finally, the experimental holes that need fill up in the future studies are marked. According to the author’s opinion an intense research with hydrophobic ILs is suggested as these ILs have been proved milder to the biological structures (both the microbial producer and the enzyme product), more effective in the organic acid recovery and suitable to perform “in situ” extraction. Extractive fermentation entails validation of ecological and toxicological characteristics of the ILs. The protocols for re-extraction of fermentative products separated by IL-assisted biphasic systems should be clearly settled along with the methods for ILs recycling and reuse. Novel more flexible approaches to process intensification can be implemented in order to adopt the separation by biphasic systems for use in industry.
Collapse
Affiliation(s)
- Konstantza Tonova
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bldg. 103, 1113 , Sofia , Bulgaria
| |
Collapse
|
13
|
Pramanik P, Sahoo R, Kumar Das S, Halder M. Fabrication of a GUMBOS-based acid-base indicator: smart probe for sensing acids and bases in any solvent. Phys Chem Chem Phys 2020; 22:28045-28054. [PMID: 33367395 DOI: 10.1039/d0cp03157g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This report outlines the synthesis of an ionic liquid-based pH-responsive indicator to sense acids or bases in non-polar as well as polar solvents. Herein, we have assembled a new ionic liquid (IL) comprised of a group of uniform materials based on organic salts (GUMBOS) by attaching a quaternary phosphonium ionic liquid with a very common acid-base indicator, methyl orange, via simple ion-exchange reaction. This integrated IL-based indicator is highly soluble in less polar solvents and exhibits good sensitivity toward the presence of acids/bases in those media. Furthermore, this indicator has been exploited in determining the dissociation constants of several acids in non-aqueous aprotic solvents by overlapping indicator method and hence this report provides essential information toward the understanding of many fundamental chemical reactions. This report has further scope for the synthesis of novel aqueous suspended nanomaterials, i.e., the nanoparticles derived from GUMBOS (nanoGUMBOS) by a simple flash nano-precipitation method. The nanomaterial has been well characterized by different spectroscopic and microscopic studies. The obtained nanoparticles also exhibit substantial pH-responsive behaviors in aqueous medium and show better susceptibility as compared to the free organic indicator. Thus, this report explores detailed studies on the IL-based indicator in sensing the acidity/basicity of various media.
Collapse
Affiliation(s)
- Prabal Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | | | | |
Collapse
|
14
|
Screening of ionic liquids for the extraction of biologically active compounds using emulsion liquid membrane: COSMO-RS prediction and experiments. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113122] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Krzyżkowska A, Regel-Rosocka M. The effect of fermentation broth composition on removal of carboxylic acids by reactive extraction with Cyanex 923. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA. Applications of phosphonium-based ionic liquids in chemical processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01901-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Role of the cation on the liquid extraction of levulinic acid from water using NTf2-based ionic liquids: Experimental data and computational analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
NMR study of structural changes of alkyl-phosphonium decanoate ionic liquid induced by water and butyric acid extraction. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Selective Separation of Acetic and Hexanoic Acids across Polymer Inclusion Membrane with Ionic Liquids as Carrier. Int J Mol Sci 2019; 20:ijms20163915. [PMID: 31408956 PMCID: PMC6720499 DOI: 10.3390/ijms20163915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/27/2022] Open
Abstract
This paper first reports on the selective separation of volatile fatty acids (VFAs) (acetic and hexanoic acids) using polymer inclusion membranes (PIMs) containing quaternary ammonium and phosphonium ionic liquids (ILs) as the carrier. The affecting parameters such as IL content, VFA concentration, and the initial pH of the feed solution as well as the type and concentration of the stripping solution were investigated. PIMs performed a much higher selective separation performance toward hexanoic acid. The optimal PIM composed of 60 wt% quaternary ammonium IL with the permeability coefficients for acetic and hexanoic acid of 0.72 and 4.38 µm s−1, respectively, was determined. The purity of hexanoic acid obtained in the stripping solution increased with an increase in the VFA concentration of the feed solution and decreasing HCl concentration of the stripping solution. The use of Na2CO3 as the stripping solution and the involvement of the electrodialysis process could dramatically enhance the transport efficiency of both VFAs, but the separation efficiency decreased sharply. Furthermore, a coordinating mechanism containing hydrogen bonding and ion exchange for VFA transport was demonstrated. The highest purity of hexanoic acid (89.3%) in the stripping solution demonstrated that this PIM technology has good prospects for the separation and recovery of VFAs from aqueous solutions.
Collapse
|
20
|
van den Bruinhorst A, Raes S, Maesara SA, Kroon MC, Esteves ACC, Meuldijk J. Hydrophobic eutectic mixtures as volatile fatty acid extractants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Türkmenoğlu A, Özmen D, Bekri S. Phase Equilibrium Study and Data Correlations for the Ternary Mixture of (Water–butyric Acid-[<i>hmim</i>][PF<sub>6</sub>]) at Different Temperatures. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Dilek Özmen
- İstanbul University-Cerrahpaşa, Engineering Faculty, Department of Chemical Engineering
| | - Sezin Bekri
- Bilim Pharmaceuticals, Gebze Organized Industrial Zone (GOSB)
| |
Collapse
|
22
|
Marták J, Schlosser Š. Influence of Anion and Cation Structure of Ionic Liquids on Carboxylic Acids Extraction. Front Chem 2019; 7:117. [PMID: 30923706 PMCID: PMC6426792 DOI: 10.3389/fchem.2019.00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 11/19/2022] Open
Abstract
A recently proposed new mechanism and a model of reactive extraction of carboxylic acids by hydrophobic ionic liquids (ILs) was tested on five systems from published as well as from new equilibrium data on liquid-liquid extraction of butyric and lactic acids (BA and LA) from aqueous solutions. Two phosphonium and one ammonium ILs were used. The model describes experimental data for all systems with a good fit. The mechanism of acid extraction by ILs is very similar for all tested systems. This indicates a more general validity of the developed model. The model allows deeper understanding of regularities in carboxylic acid extraction by hydrophobic ILs. Stability constants of the first acid-IL bonds are by one to three orders of magnitude higher compared to that of acid-acid bonds. Values of stability constants related to two acid-IL bonds are sensitive to a cation and anion structure while stability constants for acid-acid bonds more distant from polar head of IL are not sensitive to IL structure. The stability constants of acid-IL bonds for LA and phosphonium ILs are by more than one order of magnitude lower compared to those for BA and are not influenced with an anion structure. The value of stability constant for the first BA-IL bond is for phosphonium IL with a decanoate anion only one third of those for IL with a phosphinate anion. Differences in the stability of acid-IL bonds for BA and LA can be attributed to hydrophobic interactions which almost do not occur in LA extraction. Ammonium IL also forms a less stable BA-IL bond than the phosphonium IL with the same phosphinate anion. A less stable BA-IL bond can favor the higher recovery of volatile acid from the solvent by vacuum evaporation where free acid is separated instead of acid salts as in classical processes what is a great advantage.
Collapse
Affiliation(s)
- Ján Marták
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Štefan Schlosser
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
23
|
Sprakel L, Schuur B. Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|