1
|
Zhou L, Wang M, Yang S, Guo W, Pu X, He Y, Zhu J, Wang B, Zheng M, Liu S, Zhang Y. Facile synthesis of mesoporous ZSM-5 aided by sonication and its application for VOCs capture. ULTRASONICS SONOCHEMISTRY 2022; 88:106098. [PMID: 35872357 PMCID: PMC9310125 DOI: 10.1016/j.ultsonch.2022.106098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Application of ultrasound power to the mother liquor is popular pretreatment for zeolite synthesis which offers a simple way of accelerating crystallization process and finetuning the properties of nanocrystalline zeolites. In this work, sonication-aided synthesis of mesoporous ZSM-5 at low temperature and ambient pressure was systematically studied, in an attempt to reach efficient and benign synthesis of zeolites with hierarchical pore structure, which has wide applications as catalysts and sorbents. The effects of sonication duration, power density, sonication temperature and seeding on the crystallization of ZSM-5 were investigated. The obtained samples were characterized by XRD, SEM, BET and VOCs capture. High quality mesoporous ZSM-5 can be obtained by a facile 5 d synthesis at 363 K, much faster than conventional hydrothermal synthesis. The reduced synthesis time was mainly attributed to the enhanced crystallization kinetics caused by the fragmentation of seeds and nuclei, while sonication radiation had little impact on the nucleation process. Compared with control sample, mesoporous ZSM-5 prepared by sonochemical method had higher surface area and mesoporosity which demonstrated improved adsorption performance for the capture of isopropanol.
Collapse
Affiliation(s)
- Longfei Zhou
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai 201620, PR China
| | - Mingquan Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai 201620, PR China
| | - Senlin Yang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai 201620, PR China
| | - Wanying Guo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai 201620, PR China
| | - Xiangkai Pu
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Yibin He
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Jian Zhu
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Bin Wang
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Meiling Zheng
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Song Liu
- China National Building Material Group Corp, Environmental Protection Research Institute (Yancheng, Jiangsu), Jiangsu 224051, PR China
| | - Yanfeng Zhang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd, Songjiang District, Shanghai 201620, PR China.
| |
Collapse
|
4
|
Valecillos J, Tabernilla Z, Epelde E, Sastre E, Aguayo AT, Castaño P. Quenching the Deactivation in the Methanol-to-Olefin Reaction by Using Tandem Fixed-Beds of ZSM-5 and SAPO-18 Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU) P.O. Box 644, Bilbao 48080 Spain
| | - Zuria Tabernilla
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU) P.O. Box 644, Bilbao 48080 Spain
| | - Eva Epelde
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU) P.O. Box 644, Bilbao 48080 Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquı́mica, CSIC, C/Marie Curie, 2, 28049 Madrid, Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU) P.O. Box 644, Bilbao 48080 Spain
| | - Pedro Castaño
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU) P.O. Box 644, Bilbao 48080 Spain
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
5
|
Selective Formation of Para-Xylene by Methanol Aromatization over Phosphorous Modified ZSM-5 Zeolites. Catalysts 2020. [DOI: 10.3390/catal10050484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphorous modified ZSM-5 zeolites were synthesized by incipient wetness impregnation. Their performances for the methanol to aromatics conversion (MTA) were subsequently evaluated and the relationship between the catalyst structure and performance was focused on. The obtained results indicated that the introduction of phosphorous resulted in the modification of the catalyst structure characteristics and acidic properties, i.e., the reduction in the external surface area and micropore volume, the narrowing of the pore size, and the decrease in the quantity and strength of acid sites. As a result, the P/HZSM-5 catalyst exhibited the enhanced selectivity for the para-xylene (PX) in xylene isomers and xylene in aromatics, and their increase degrees were intensified with the increasing P content. The selectivity of PX in X increased from 23.8% to nearly 90% when P content was 5 wt.%. Meanwhile, the selectivity of xylene in aromatics was enhanced from 41.3% to 60.2%.
Collapse
|
6
|
A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production. Catalysts 2020. [DOI: 10.3390/catal10020245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Light olefins including ethylene, propylene and butylene are important building blocks in petrochemical industries to produce various chemicals such as polyethylene, polypropylene, ethylene oxide and cumene. Traditionally, light olefins are produced via a steam cracking process operated at an extremely high temperature. The catalytic conversion, in which zeolites have been widely used, is an alternative pathway using a lower temperature. However, conventional zeolites, composed of a pure microporous structure, restrict the diffusion of large molecules into the framework, resulting in coke formation and further side reactions. To overcome these problems, hierarchical zeolites composed of additional mesoporous and/or macroporous structures have been widely researched over the past decade. In this review, the recent development of hierarchical zeolite nanosheets and nanoparticle assemblies together with opening up their applications in various light olefin productions such as catalytic cracking, ethanol dehydration to ethylene, methanol to olefins (MTO) and other reactions will be presented.
Collapse
|
7
|
Luo M, Liu M, Fu Y, Chen W, Wang B, Mao G. TEAOH‐Templated SAPO‐34 Zeolite with Different Crystallization Processes and Silicon Sources: Crystallization Mechanism and MTO Performance. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingjian Luo
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Mingxu Liu
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Yadong Fu
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Wenxin Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Baohui Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Guoliang Mao
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| |
Collapse
|