1
|
Hădărugă NG, Popescu G, Gligor (Pane) D, Mitroi CL, Stanciu SM, Hădărugă DI. Discrimination of β-cyclodextrin/hazelnut ( Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis. Beilstein J Org Chem 2023; 19:380-398. [PMID: 37025496 PMCID: PMC10071518 DOI: 10.3762/bjoc.19.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The goal of the study was the discrimination of β-cyclodextrin (β-CD)/hazelnut (Corylus avellana L.) oil/antioxidant ternary complexes through Fourier-transform infrared spectroscopy coupled with principal component analysis (FTIR-PCA). These innovative complexes combine the characteristics of the three components and improve the properties of the resulting material such as the onsite protection against oxidative degradation of hazelnut oil unsaturated fatty acid glycerides. Also, the apparent water solubility and bioaccessibility of the hazelnut oil components and antioxidants can be increased, as well as the controlled release of bioactive compounds (fatty acid glycerides and antioxidant flavonoids, namely hesperidin, naringin, rutin, and silymarin). The appropriate method for obtaining the ternary complexes was kneading the components at various molar ratios (1:1:1 and 3:1:1 for β-CD hydrate:hazelnut oil (average molar mass of 900 g/mol):flavonoid). The recovering yields of the ternary complexes were in the range of 51.5-85.3% and were generally higher for the 3:1:1 samples. The thermal stability was evaluated by thermogravimetry and differential scanning calorimetry. Discrimination of the ternary complexes was easily performed through the FTIR-PCA coupled method, especially based on the stretching vibrations of CO groups in flavonoids and/or CO/CC groups in the ternary complexes at 1014.6 (± 3.8) and 1023.2 (± 1.1) cm-1 along the second PCA component (PC2), respectively. The wavenumbers were more appropriate for discrimination than the corresponding intensities of the specific FTIR bands. On the other hand, ternary complexes were clearly distinguishable from the starting β-CD hydrate along the first component (PC1) by all FTIR band intensities and along PC2 by the wavenumber of the asymmetric stretching vibrations of the CH groups at 2922.9 (± 0.4) cm-1 for ternary complexes and 2924.8 (± 1.4) cm-1 for β-CD hydrate. The first two PCA components explain 70.38% from the variance of the FTIR data (from a total number of 26 variables). Other valuable classifications were obtained for the antioxidant flavonoids, with a high similarity for hesperidin and naringin, according to FTIR-PCA, as well as for ternary complexes depending on molar ratios. The FTIR-PCA coupled technique is a fast, nondestructive and cheap method for the evaluation of quality and similarity/characteristics of these new types of cyclodextrin-based ternary complexes having enhanced properties and stability.
Collapse
Affiliation(s)
- Nicoleta G Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Research Institute for Biosecurity and Bioengineering, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Gabriela Popescu
- Department of Rural Management and Development, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Cristina L Mitroi
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Sorin M Stanciu
- Department of Economy and Company Financing, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 30001 Timişoara, Romania
| |
Collapse
|
2
|
Abdel-Ghany HSM, Abdel-Shafy S, Abuowarda M, El-Khateeb RM, Hoballah EM, Fahmy MM. Acaricidal activity of Artemisia herba-alba and Melia azedarach oil nanoemulsion against Hyalomma dromedarii and their toxicity on Swiss albino mice. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:241-262. [PMID: 33934282 DOI: 10.1007/s10493-021-00618-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Biopesticides such as essential oils (EOs) are considered an improvement for integrated pest control as they appear to be less toxic to the environment than chemical acaricides. The current study aimed to evaluate the acaricidal activity of Artemisia herba-alba and Melia azedarach oil loaded nano-emulsion as alternatives for chemical acaricides against the camel tick Hyalomma dromedarii, besides evaluating their toxic effect on Swiss albino mice. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of loaded nano-emulsions.The immersion test was used for the bioassay of both loaded nanoemulsions on tick stages (egg, nymph, larva, and adult). Mortality percentages and LC50 values of each tick stage were calculated. Reproductive performance for the survived engorged females after treatment was monitored. The toxicity of both loaded nano-emulsions was evaluated on Swiss albino mice by an oral dose of 1500 mg/kg/day for five successive days. The hematological, biochemical, and histopathological changes were evaluated. TEM characterization revealed spherical droplets for A. herba-alba and M. azedarach oil loaded nano-emulsion with droplet size ranging from 62 to 69 nm and 52-91 nm, respectively. FTIR revealed the absence of extra peaks in the loaded nano-emulsions that confirmed no chemical changes existed by ultrasonication. The LC50 values of A. herba-alba and M. azedarach oil loaded nano-emulsion on embryonated eggs, larvae, engorged nymphs, and unfed adults were 0.3 and 1.1%, 0.7 and 1.7%, 0.3 and 0.4%, 4.4 and 22.2%, respectively. The egg productive index (EPI), egg number, and hatchability percentage were lower in the treated females compared with Butox 5% (deltamethrin) and control. The hematological picture and biochemical analysis revealed insignificant changes in the treatment group compared with the negative control group. The liver of the A. herba-alba and M. azedarach oil loaded nano-emulsion treated group exhibited vacuolar degeneration and infiltration of lymphocytic cells. The kidney of mice treated with A. herba-alba and M. azedarach oil loaded nano-emulsion showed hemolysis and slight degeneration of epithelial cells of tubules. It is concluded that A. herba-alba and M. azedarach oil loaded nano-emulsion have good acaricidal activity against camel tick H. dromedarii.
Collapse
Affiliation(s)
- Hoda S M Abdel-Ghany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Mai Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rabab M El-Khateeb
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Essam M Hoballah
- Department of Agriculture Microbiology, Agricultural and Biological Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Fahmy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Yue L, Li J, Jin W, Zhao M, Xie P, Chi S, Lei Z, Zhu H, Zhao Y. Host–guest interaction between 20(S)-protopanaxatriol and three polyamine-modified β-cyclodextrins: preparation, characterization, inclusion modes, and solubilization. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Ma Y, Zhou T, Zhu W, Fan B, Liu H, Fan G, Hao H, Sun H, Yang B. Understanding the anticorrosive mechanism of a cross-linked supramolecular polymer for mild steel in the condensate water: comprehensive experimental, molecular docking, and molecular dynamics investigations. J Mol Model 2020; 26:81. [PMID: 32180006 DOI: 10.1007/s00894-020-4336-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
A supramolecular polymer (CDP-DA) was prepared through the crosslinking reaction among the assembled complexes (CDDA) based on β-cyclodextrin (β-CyD) and octadecylamine (ODA). The structural properties of CDP-DA were clarified by experimental techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, and thermal analysis. Based on the results of molecular docking, the crosslinking unit, CDDA, in the CDP-DA structure favors to exhibit the configuration that narrow rims of two host compounds (β-CyD) are opposite to each other leaving the amino group of ODA outside the host cavity. The corrosion inhibition performance of CDP-DA for mild steel in industrial condensate water was evaluated by electrochemical measurements and surface analyses, the mechanism of which was disclosed by molecular dynamics simulations in the aspects of adsorption equilibrium and ions diffusion models. The results of electrochemical tests indicate that CDP-DA effectively retards the anodic and cathodic reactions and improves the interfacial charge transfer resistance of mild steel in condensate water, which can be categorized as the mixed-type inhibitor. Surface analyses reveal that CDP-DA adsorbs on the steel surface in the integral form showing a monolayer nature, which is consolidated by molecular dynamics simulations. The diffusion behavior of in situ ions in the adsorbed layer is prominently suppressed as compared with those in bulk solution. The robust barrier layer and the mitigated diffusion of ions may contribute to the effective inhibition for CDP-DA against steel deterioration in the condensate water. Anticorrosive mechanism of a cross-linked supramolecular polymer for mild steel in the condensate water.
Collapse
Affiliation(s)
- Yucong Ma
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China
| | - Tingting Zhou
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China
| | - Wenqin Zhu
- Petro China, Petrochemical Research Institute, Beijing, 102206, China
| | - Baomin Fan
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China.
| | - Hao Liu
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China
| | - Guifeng Fan
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China
| | - Hua Hao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Sun
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China
| | - Biao Yang
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 10048, China.
| |
Collapse
|
5
|
Ma Y, Fan B, Zhou T, Hao H, Yang B, Sun H. Molecular Assembly between Weak Crosslinking Cyclodextrin Polymer and trans-Cinnamaldehyde for Corrosion Inhibition towards Mild Steel in 3.5% NaCl Solution: Experimental and Theoretical Studies. Polymers (Basel) 2019; 11:E635. [PMID: 30960614 PMCID: PMC6523557 DOI: 10.3390/polym11040635] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 11/17/2022] Open
Abstract
Constructing molecular assembly between a soluble cyclodextrin polymer (SCDP) and an anticorrosive component is conducive to increasing the availability of a corrosion inhibitor with low molecular polarity in aqueous solution. The SCDP was prepared via the weak crosslinking effect of glutaraldehyde using β-cyclodextrin as the subunit, whose structure was confirmed by proton nuclear magnetic resonance spectra (¹H NMR), X-ray diffraction and morphology. An assembly between SCDP (host) and trans-cinnamaldehyde (guest, CA) was constructed, and the intermolecular interactions were disclosed by Fourier transform infrared spectra (FTIR). The corrosion inhibition of SCDP/CA assembly for mild steel in 3.5% NaCl solution was assessed through electrochemical and surface analyses. ¹H NMR results showed that exterior hydroxyls of β-cyclodextrin were the active sites for crosslinking. Hydrogen bonds might be the binding force between SCDP and CA according to FTIR analyses. Electrochemical measurements revealed that SCDP/CA assembly could suppress both cathodic and anodic reactions and enhance the polarization impedance for mild steel in the corrosive medium with a maximum efficiency of 92.2% at 30 °C. Surface analyses showed that CA molecules could be released from the assembly followed by the energy competition mechanism, and solely adsorb on the steel surface in parallel form, which was further evidenced by theoretical modeling.
Collapse
Affiliation(s)
- Yucong Ma
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Baomin Fan
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Zhou
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Hua Hao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Biao Yang
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Hui Sun
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|