1
|
Lalsangpuii F, Rokhum SL, Nghakliana F, V L Ruatpuia J, Tochhawng L, Trivedi AK, Lalfakzuala R, Siama Z. Mikania micrantha silver nanoparticles exhibit anticancer activities against human lung adenocarcinoma via caspase-mediated apoptotic cell death. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:186-200. [PMID: 38465883 DOI: 10.1080/21691401.2024.2325942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Mikania micrantha leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of M. micrantha leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | - Joseph V L Ruatpuia
- Department of Chemistry, National Institute of Technology Silchar, Silchar, India
| | | | | | | | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
2
|
Yu L, Zhou Y, Chen Y, Wang Y, Gu Q, Song D. Antifungal activity and mechanism of Litsea cubeba (Lour.) Persoon essential oil against the waxberry spoilage fungi Penicillium oxalicum and its potential application. Int J Food Microbiol 2024; 411:110512. [PMID: 38043475 DOI: 10.1016/j.ijfoodmicro.2023.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Litsea cubeba essential oil (LCEO) is a broad-spectrum bacteriostatic substance produced from the fruit of the Litsea tree that has been used for the treatment of various diseases in China for thousands of years. Here, the antifungal activities of LCEO against 10 different fungi (Naganishia diffluens, Fusarium sacchari, Cladosporium tenuissimum, Fusarium proliferatum, Fusarium verticillioides, Fusarium subglutinans, Mucor racemosus, Penicillium oxalicum, Penicillium chrysogenum, and Aspergillus niger) that cause rot to waxberries were assessed. The chemical components of LCEO and its modes of action against P. oxalicum were investigated. Citral (32.62 %) was characterized as the main component of LCEO by gas chromatography-mass spectrometry. LCEO exhibited excellent antifungal activities against all 10 fungi. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration of LCEO against P. oxalicum were 2.24 and 4.48 g/L, respectively. Furthermore, LCEO (MIC) compromised membrane permeability and integrity, caused leakage of the cell components, and increased production of malondialdehyde and reactive oxygen species. Scanning electron microscopy and transmission electron microscopy indicated that the morphology and ultrastructure of the LCEO-treated hyphal cell membrane and organelles were severely damaged. Meanwhile, LCEO increased the shelf life of waxberries from 1-2 to 5-6 d. LCEO is a potential ecologically friendly alternative to commercial fungicides to inhibit postharvest fungal contamination of waxberries during shipment and storage.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangxia Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL. Essential Oils in Cervical Cancer: Narrative Review on Current Insights and Future Prospects. Antioxidants (Basel) 2023; 12:2109. [PMID: 38136228 PMCID: PMC10740549 DOI: 10.3390/antiox12122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Nor Haliza Mohamad Najib
- Unit of Anatomy, Faculty Medicine & Health Defence, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
4
|
Ali Khan M, El-Kersh DM, Islam MS, Ara Khan S, Kamli H, Sarkar C, Bhuia MS, Islam T, Chandra Shill M, Gobe GC, Sönmez Gürer E, Setzer WN, Sharifi-Rad J, Torequl Islam M. Mikania micrantha Kunth: An Ethnopharmacological Treasure Trove of Therapeutic Potential. Chem Biodivers 2023; 20:e202300392. [PMID: 37715705 DOI: 10.1002/cbdv.202300392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
Mikania micrantha is utilized as a therapeutic for the treatment of various human ailments including insect bites, rashes and itches of skin, chicken pox, healing of sores and wounds, colds and fever, nausea, jaundice, rheumatism, and respiratory ailments. This study aimed at summarizing the traditional uses, phytochemical profile, and biological activities of M. micrantha based on obtainable information screened from different databases. An up-to-date search was performed on M. micrantha in PubMed, Science Direct, clinicaltrials.gov, and Google Scholar databases with specific keywords. No language restrictions were imposed. Published articles, theses, seminar/conference papers, abstracts, and books on ethnobotany, phytochemistry and pharmacological evidence were considered. Based on the inclusion criteria, this study includes 53 published records from the above-mentioned databases. The results suggest that fresh leaves and whole plant are frequently used in folk medicine. The plant contains more than 150 different phytochemicals under the following groups: essential oils, phenolics and flavonoids, terpenes, terpene lactones, glycosides, and sulfated flavonoids. It contains carbohydrates and micronutrients including vitamins and major and trace minerals. M. micrantha possesses antioxidant, anti-inflammatory, anti-microbial, anti-dermatophytic, anti-protozoal, anthelmintic, cytotoxic, anxiolytic, anti-diabetic, lipid-lowering and antidiabetic, spasmolytic, memory-enhancing, wound-healing, anti-aging, and thrombolytic activities. No clinical studies have been reported to date. M. micrantha might be one of the potential sources of phytotherapeutic compounds against diverse ailments in humans. Studies are required to confirm its safety profile in experimental animals prior to initiating clinical trials. Moreover, adequate investigation is also crucial to clarify exact mechanism of action for each biological effect.
Collapse
Affiliation(s)
- Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, is missing, Egypt
| | - Md Shafiqul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shams Ara Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Glenda C Gobe
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Eda Sönmez Gürer
- Sivas Cumhuriyet University, Faculty of Pharmacy, Department of Pharmacognosy, Sivas, Turkey
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
5
|
Nguyen QT, Huynh Thi KL, Nguyen MP, Trinh T, Pham NT, Ho MN, Tran Thi YN, Tran NQ, Le Thi P. A comparative study on essential oils from the leaves and stems of Vietnamese Mikania micrantha Kunth. Nat Prod Res 2023:1-7. [PMID: 37635675 DOI: 10.1080/14786419.2023.2251168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Mikania micrantha Kunth is widely known as potential herbal medicine, although it is an invasive alien species in Southeast Asia. In this study, the essential oils from leaves and stems of M. micrantha were extracted by hydrodistillation method, and the chemical profiles of essential oils were then analysed by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC/MS). It was found that there were similarities and differences in chemical compositions and their percentage between the essential oils obtained from these two parts. The dominant components of leaves essential oil are β-Cubebene, Germacrene D, and α-Zingiberene, accounting for 11.34%, 10.96%, and 10.76%, respectively. Additionally, the major components of stems essential oils are D-Limonene (16.99%), β-Pinene (7.91%), and α-Zingiberene (7.26%). The research sheds fresh light on the chemical makeup of M. micrantha essential oils, emphasising their potential for the future.
Collapse
Affiliation(s)
- Quoc Trung Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khanh Ly Huynh Thi
- Vietnam National University, Ho Chi Minh City, Vietnam
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Minh Phuc Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thien Trinh
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Thach Pham
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Nhut Ho
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yen Nhi Tran Thi
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Abdellah YAY, Luo YS, Sun SS, Yang X, Ji HY, Wang RL. Phytochemical and underlying mechanism of Mikania micrantha Kunth on antibiotic resistance genes, and pathogenic microbes during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128241. [PMID: 36332871 DOI: 10.1016/j.biortech.2022.128241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.
Collapse
Affiliation(s)
- Yousif Abdelrahman Yousif Abdellah
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shan-Shan Sun
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Xi Yang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yi Ji
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Saikia S, Tamuli KJ, Narzary B, Bordoloi M, Banik D. Chemical composition, antimicrobial activity and cytotoxicity of Murraya paniculata (L.) Jack leaf essential oil from Assam, India: the effect of oil on cellular morphology of micro-organisms. Arch Microbiol 2021; 204:99. [DOI: 10.1007/s00203-021-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
|
8
|
Essential oil from the leaves of
Elsholtzia communis
(Collett & Hemsl.) Diels from North East India: Studies on chemical profiling, antimicrobial, cytotoxic and ACE inhibitory activities. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Nath S, Tamuli KJ, Gogoi B, Bordoloi M, Das A, Barua CC, Barua IC. Antioxidant properties, phenolic and mineral profiling, assessment of angiotensin I converting enzyme (ACE) inhibitory potential of Elsholtzia communis (Collett & Hemsl.) Diels from North East India. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|