1
|
Recent Advances in Smart Hydrogels Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers (Basel) 2022; 14:polym14204377. [PMID: 36297955 PMCID: PMC9608571 DOI: 10.3390/polym14204377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Materials with excellent biocompatibility and targeting can be widely used in the biomedical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the traditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is green, and has environmental protection. This technology can easily adjust mechanical properties, swelling, and so on. This review provides a classification of hydrogels and different preparation methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for biomedical applications.
Collapse
|
2
|
Pei Q, Han Q, Tang F, Wu J, Xu S, Zhang M, Ding A. Gallic‐Acid‐Modified Naphthalimide Containing Disulfide Bond as Reduction‐Responsive Supramolecular Organogelator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Pei
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Qingqing Han
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Fang Tang
- Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jinjin Wu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Shijie Xu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Mengyao Zhang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
4
|
Panja S, Dietrich B, Adams DJ. Controlling Syneresis of Hydrogels Using Organic Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santanu Panja
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Bart Dietrich
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Dave J. Adams
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
5
|
Panja S, Dietrich B, Adams DJ. Controlling Syneresis of Hydrogels Using Organic Salts. Angew Chem Int Ed Engl 2022; 61:e202115021. [PMID: 34825758 PMCID: PMC9299832 DOI: 10.1002/anie.202115021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/02/2022]
Abstract
Supramolecular hydrogels can spontaneously undergo syneresis through fibre-fibre interactions and expel significant amounts of water upon aging. In this process, the hydrophobicity of fibres which regulates the 3D-rearrangement of the self-assembled structures during syneresis is important. Here, we show that we can control the hydrophobic microenvironment of gels by incorporating organic salts into the co-assembled gel fibres thereby enabling control of the macroscopic gel volume phase transition.
Collapse
Affiliation(s)
- Santanu Panja
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Bart Dietrich
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
6
|
Chelikani V, Bhardwaj P, Kumar L, On SLW, Mohan MS, Olivero A, Thake L, Ramadhani S, Wescombe PA, Olejar KJ. Novel viscoelastic gelling agent with unique physico-chemical properties. Food Chem 2020; 344:128715. [PMID: 33277129 DOI: 10.1016/j.foodchem.2020.128715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
A novel innovative viscoelastic gelling agent (novel gel, NG) has been developed by combining citric acid (CA) and disodium 5-guanylate (DG). NG has the potential to replace other gelling agents such as gelatine, which has been commonly used in foods, dietary supplements, pharmaceutical and cosmetic products including ointments and sprays. NG has unique physico-chemical properties, including a wide range of concentration-dependent, temperature-sensitive gel strengths. Based on the rheological measurement results, NG depicted similar shear thinning behaviour to gelatine, within shear rates ranging from 25.8 to 129 (s-1). NG also significantly increased the shelf-life (by 21 days) of minced beef, as well as inhibited the growth of major spoilage pathogens, such as E. coli, S. aureus, Salmonella sp., Listeria sp., yeast and moulds, making it an ideal candidate for gelatine replacement.
Collapse
Affiliation(s)
- Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand.
| | - Piyush Bhardwaj
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Lokesh Kumar
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Maneesha S Mohan
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Avitta Olivero
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Loane Thake
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Sintia Ramadhani
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Philip A Wescombe
- Yili Innovation Centre Oceania, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| | - Kenneth J Olejar
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand
| |
Collapse
|