1
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Nasiri A, Golestani N, Rajabi S, Hashemi M. Facile and green synthesis of recyclable, environmentally friendly, chemically stable, and cost-effective magnetic nanohybrid adsorbent for tetracycline adsorption. Heliyon 2024; 10:e24179. [PMID: 38293470 PMCID: PMC10825349 DOI: 10.1016/j.heliyon.2024.e24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Antibiotic contamination of water sources, particularly tetracycline (TC) contamination, has emerged as one of the global issues that needs action. In this research, ZnCoFe2O4@Chitosan (Ch) as a magnetic nanohybrid adsorbent was synthesized using the microwave-assisted co-precipitation method, and their efficiency for the TC adsorption process was investigated. FESEM (Field Emission Scanning Electron Microscope), EDX (Energy Dispersive X-ray), Mapping and line Scan, XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Spectrometer), VSM (Vibrating Sample Magnetometer), Thermogravimetric analysis (TGA) and BET (Brunauer Emmett Teller) techniques were used to check and verify its physical and chemical properties. The removal of TC via the adsorption process from synthetic and real wastewater samples was investigated. The factors determining the TC adsorption process, comprising tetracycline concentration (5-30 mg/L), adsorbent dosage (0.7-2 g/L), contact time (2-45 min), and pH (3-11), were evaluated. The removal effectiveness for the synthetic sample and the real wastewater sample was 93 % and 80 %, respectively, under the ideal TC adsorption process parameters of pH 3, adsorbent dosage 1 g/L, TC initial concentration 5 mg/L, and contact time 30 min. According to kinetic and equilibrium studies, the adsorption of TC by ZnCoFe2O4@Ch follows pseudo-second-order kinetics and the Freundlich isotherm. Additionally, it was determined through the analysis of thermodynamic data that the process of exothermic adsorption is spontaneous and is followed by a decrease in disorder (ΔH = -15.16 kJ/mol, ΔS = -28.69 kJ/mol, and ΔG = -6.62 kJ/mol). After five cycles of recovery and regeneration, the ZnCoFe2O4@Ch magnetic nanocomposite was able to remove 65 % of the TC pollutant and had good chemical stability. The results showed that the magnetic nano-adsorbent ZnCoFe2O4@Ch is a novel magnetic nano-adsorbent with high adsorption capacity that can be utilized to eliminate pharmaceutical contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Golestani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Feng X, Long R, Wang L, Liu C, Bai Z, Liu X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Shi W, Shahri EE, Es’hagi Z, Zhao J. Preyssler heteropolyacid supported on magnetic silica for hollow fiber solid-phase microextraction of anti-hypertensive drugs in human hair. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ma J, Wang H, Li D, Liu L, Yang H. Preparation novel mercaptotriazole-functionalized paramagnetic nickel-zinc ferrite microspheres for absorbing Hg (II) in waste water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Habila MA, AlMasoud N, Alomar TS, AlOthman ZA, Yilmaz E, Soylak M. Deep Eutectic Solvent-Based Microextraction of Lead(II) Traces from Water and Aqueous Extracts before FAAS Measurements. Molecules 2020; 25:molecules25204794. [PMID: 33086622 PMCID: PMC7587555 DOI: 10.3390/molecules25204794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Microextraction procedures for the separation of Pb(II) from water and food samples extracts were developed. A deep eutectic solvent composed of α-benzoin oxime and iron(III) chloride dissolved in phenol was applied as a phase separator support. In addition, this deep eutectic mixture worked as an efficient extractor of Pb(II). The developed microextraction process showed a high ability to tolerate the common coexisting ions in the real samples. The optimum conditions for quantitative recoveries of Pb(II) from aqueous extracts were at pH 2.0, conducted by adding 150 µL from the deep eutectic solvent. The quantitative recoveries were obtained with various initial sample volumes up to 30 mL. Limits of detection and limits of quantification of 0.008 and 0.025 µg L-1 were achieved with a relative standard deviation (RSD%) of 2.9, which indicates the accuracy and sensitivity of the developed procedure. Recoveries from the reference materials, including TMDA 64.2, TMDA 53.3, and NCSDC-73349, were 100%, 97%, and 102%, respectively. Real samples, such as tap, lake, and river water, as well as food samples, including salted peanuts, chickpeas, roasted yellow corn, pistachios, and almonds, were successfully applied for Pb(II) analysis by atomic absorption spectroscopy (AAS) after applying the developed deep eutectic solvent-based microextraction procedures.
Collapse
Affiliation(s)
- Mohamed A Habila
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, 38039 Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|