1
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
2
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
3
|
Chen YT, Wen X, He J, Li Z, Zhu S, Chen W, Yu J, Guo Y, Ni S, Chen S, Dang L, Li MD. Boosting Near-Infrared Photothermal Conversion by Intermolecular Interactions in Isomeric Cocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28781-28791. [PMID: 35709472 DOI: 10.1021/acsami.2c03940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic cocrystal exhibits excellent photothermal conversion (PTC), but how the intermolecular interactions of cocrystals regulate the PTC is obscure. Here, two isomeric donor molecules (phenanthrene and anthracene) and two electron-withdrawing molecules (7,7,8,8,8-tetracyanodimethylquinone and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinone dimethane) are self-assembled into the four cocrystals (PTQ, PFQ, ATQ, and AFQ). By changing the molecular configuration of the donor and the electron-withdrawing ability of the acceptor, the intrinsic influencing factors of the intermolecular interaction on the PTC were explored. Under near-infrared laser (808 nm) irradiation, the PTC efficiencies of PTQ, PFQ, AFQ, and ATQ are 35.85, 44.74, 57.00, and 60.53%, respectively. Based on the single-crystal X-ray diffraction, ultrafast time-resolved transient absorption, and excited-state theoretical calculations, we found that the π-π stacking in ATQ and AFQ is conducive to promoting the near-infrared light-harvesting ability and the p-π interaction of cocrystals can regulate the nonradiative rotation of -C(C≡N)2 groups, resulting in a tunable near-infrared PTC via the isomeric cocrystals. Accordingly, the evaporation rate of the porous polyurethane-AFQ foam can reach 1.33 kg·m-2·h-1 in the simulated solar-driven water evaporation system. This work provides a strategy to boost the PTC by the intermolecular interactions of cocrystal materials.
Collapse
Affiliation(s)
- Ye-Tao Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xinyi Wen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Zhanhua Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Sheng Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jierong Yu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shunli Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
4
|
Zhu Y, Wu W, Xu T, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanzhao Zhu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Wei Wu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Tong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Hong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Yimeng Ma
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Donghua University Shanghai China
| |
Collapse
|
5
|
Zhu Y, Wu W, Xu T, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Zhang Q, Li Y, Cao Z, Zhu C. Aggregation-induced emission spectra of triphenylamine salicylaldehyde derivatives via excited-state intramolecular proton transfer revealed by molecular spectral and dynamics simulations. RSC Adv 2021; 11:37171-37180. [PMID: 35496419 PMCID: PMC9043594 DOI: 10.1039/d1ra07388e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Aggregation-induced emission (AIE) spectra accompanied by excited state intramolecular proton transfer (ESIPT) for two triphenylamine salicylaldehyde derivatives (namely, TS and TS-OMe) are investigated by performing molecular spectral and dynamics simulations associated with the hybrid quantum mechanics/molecular mechanics (QM/MM) at the quantum level of the time-dependent density functional theory. The simulated emission spectral peaks and Stokes' shifts are in good agreement with the experimental results for both TS and TS-OMe. Furthermore, the AIE spectral mechanisms are well explained to be associated with the ESIPT processes for both TS and TS-OMe monomers in the aggregated crystal state, while the AIE spectra mechanism for the TS-OMe (TS) dimer is accompanied by intermolecular charge-transfer excitation process. Besides, the TS dimers also contributed to the AIE mechanisms in the crystal with the intermolecular charge-transfer from one monomer to another. In addition, the TS dimers are contributed to the AIE mechanisms in the crystal with the intermolecular charge-transfer from one monomer to another. On the other hand, simulated emission spectra for both the TS and TS-OMe monomers in acetonitrile solution are involved in mixed emission with and without the ESIPT process, as interpreted by nonadiabatic molecular dynamics simulation. It is also briefly addressed that the emission spectra in the solution are weak and enhanced in the crystal. The present study provides a great physical insight into the design of highly efficient AIE compounds.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| | - Chaoyuan Zhu
- Department of Applied Chemistry, Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
- Department of Applied Chemistry, Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
7
|
Tinidazole adsorption on the surface of pristine and Si-doped fullerenes (C20 and SiC19): a theoretical investigation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Zhang Q, Cao Z. Packing Effect on Light Emission of Naphthyridine-Based Luminophor: Insights from Quantum Mechanics and Quantum Mechanics/Molecular Mechanics Calculations. J Phys Chem B 2021; 125:3005-3013. [PMID: 33721999 DOI: 10.1021/acs.jpcb.1c01557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Luminescent properties of the naphthyridine-based luminophor, 2,7-di(9,9-dimethylacridin-10(9H)-yl)-1,8-naphthyridine (DMAC-ND), have been explored by using quantum mechanics and quantum mechanics/molecular mechanics calculations. Based on different packing models for DMAC-ND monomer in tetrahydrofuran (THF) solution and its crystal and amorphous aggregated states, the morphology dependence of light absorption and emission has been explored. Calculations reveal that the intersystem crossing rates (kisc) from S1 to T1 are comparable with their corresponding non-radiative decay rates (knr) from S1 to S0 in crystal and amorphous phases, while the kisc value in THF solution is 6 orders of magnitude smaller than its corresponding knr, suggesting that effective intersystem crossing (ISC) may occur only in the aggregated configurations. The predicted reverse intersystem crossing rates (krisc) are also comparable with their corresponding non-radiative decay rates from T1 to S0, and there would be an effective upconversion process in the aggregated state. The predicted krisc values show notable morphology and temperature dependences, and the aggregation and the increase in temperature can facilitate the reverse intersystem crossing process. Based on the independent gradient model and energy decomposition analysis, combined with the estimation of the Huang-Rhys factors, such remarkable packing effects on the luminescent properties of DMAC-ND can be ascribed into the strong intermolecular interactions and the restriction of low-frequency vibrations in the crystal and amorphous phases.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People's Republic of China
| |
Collapse
|
9
|
Shen J, Elm J, Xie HB, Chen J, Niu J, Vehkamäki H. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13498-13508. [PMID: 33091300 DOI: 10.1021/acs.est.0c05358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atmospheric amines can enhance methanesulfonic acid (MSA)-driven new particle formation (NPF), but the mechanism is fundamentally different compared to that of the extensively studied sulfuric acid (SA)-driven process. Generally, the enhancing potentials of amines in SA-driven NPF follow the basicity, while this is not the case for MSA-driven NPF, where structural effects dominate, making MSA-driven NPF more prominent for methylamine (MA) compared to dimethylamine (DMA). Therefore, probing structural factors determining the enhancing potentials of amines on MSA-driven NPF is key to fully understanding the contribution of MSA to NPF. Here, we performed a comparative study on DMA and MA enhancing MSA-driven NPF by examining cluster formation using computational methods. The results indicate that DMA-MSA clusters are more stable than the corresponding MA-MSA clusters for cluster sizes up to (DMA)2(MSA)2, indicating that the basicity of amines dominates the initial cluster formation. The methyl groups of DMA were found to present significant steric hindrance beyond the (DMA)2(MSA)2 cluster and this adds to the lower hydrogen bonding capacity of DMA, making the cluster growth less favorable compared to MA. This study implies that several amines could synergistically enhance MSA-driven NPF by maximizing the advantage of different amines in different amine-MSA cluster growth stages.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64 Gustaf Hällströmin katu 2a, Helsinki FI-00014, Finland
| |
Collapse
|