1
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
2
|
Mingot J, Benejam N, Víllora G, Alemán C, Armelin E, Lanzalaco S. Multimodal Biomedical Implant with Plasmonic and Simulated Body Temperature Responses. Macromol Biosci 2023; 23:e2300118. [PMID: 37081810 DOI: 10.1002/mabi.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Indexed: 04/22/2023]
Abstract
This work presents a novel nanoparticle-based thermosensor implant able to reveal the precise temperature variations along the polymer filaments, as it contracts and expands due to changes in the macroscale local temperature. The multimodal device is able to trace the position and the temperature of a polypropylene mesh, employed in abdominal hernia repair, by combining plasmon resonance and Raman spectroscopy with hydrogel responsive system. The novelty relies on the attachment of the biocompatible nanoparticles, based on gold stabilized by a chitosan-shell, already charged with the Raman reporter (RaR) molecules, to the robust prosthesis, without the need of chemical linkers. The SERS enhanced effect observed is potentiated by the presence of a quite thick layer of the copolymer (poly(N-isopropylacrylamide)-co-poly(acrylamide)) hydrogel. At temperatures above the LCST of PNIPAAm-co-PAAm, the water molecules are expulsed and the hydrogel layer contracts, leaving the RaR molecules more accessible to the Raman source. In vitro studies with fibroblast cells reveal that the functionalized surgical mesh is biocompatible and no toxic substances are leached in the medium. The mesh sensor opens new frontiers to semi-invasive diagnosis and infection prevention in hernia repair by using SERS spectroscopy. It also offers new possibilities to the functionalization of other healthcare products.
Collapse
Affiliation(s)
- Júlia Mingot
- Departament of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, Barcelona, 08019, Spain
- Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, 08019, Barcelona, Spain
| | - Nícolas Benejam
- Departament of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, Barcelona, 08019, Spain
| | - Gloria Víllora
- Chemical Engineering Department, Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Carlos Alemán
- Departament of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, Barcelona, 08019, Spain
- Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, 08019, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Elaine Armelin
- Departament of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, Barcelona, 08019, Spain
- Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, 08019, Barcelona, Spain
| | - Sonia Lanzalaco
- Departament of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, Barcelona, 08019, Spain
- Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), C/d'Eduard Maristany, 10-14, Building I, 08019, Barcelona, Spain
| |
Collapse
|
3
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
4
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
5
|
Li T, Wang Y, Wang M, Zheng L, Dai W, Jiao C, Song Z, Ma Y, Ding Y, Zhang Z, Yang F, He X. Impact of Albumin Pre-Coating on Gold Nanoparticles Uptake at Single-Cell Level. NANOMATERIALS 2022; 12:nano12050749. [PMID: 35269237 PMCID: PMC8911762 DOI: 10.3390/nano12050749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Nanoparticles (NPs) suspension is thermodynamically unstable, agglomeration and sedimentation may occur after introducing NPs into a physiological solution, which in turn affects their recognition and uptake by cells. In this work, rod-like gold NPs (AuNRs) with uniform morphology and size were synthesized to study the impact of bovine serum albumin (BSA) pre-coating on the cellular uptake of AuNRs. A comparison study using horizontal and vertical cell culture configurations was performed to reveal the effect of NPs sedimentation on AuNRs uptake at the single-cell level. Our results demonstrate that the well-dispersed AuNRs-BSA complexes were more stable in culture medium than the pristine AuNRs, and therefore were less taken up by cells. The settled AuNRs agglomerates, although only a small fraction of the total AuNRs, weighed heavily in determining the average AuNRs uptake at the population level. These findings highlight the necessity of applying single-cell quantification analysis in the study of the mechanisms underlying the cellular uptake of NPs.
Collapse
Affiliation(s)
- Tao Li
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China;
| | - Yun Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
| | - Wanqin Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Jiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuda Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
| | - Yayun Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
| | - Zhiyong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.Z.); (F.Y.); (X.H.)
| | - Fang Yang
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China;
- Correspondence: (Z.Z.); (F.Y.); (X.H.)
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (M.W.); (L.Z.); (W.D.); (C.J.); (Z.S.); (Y.M.); (Y.D.)
- Correspondence: (Z.Z.); (F.Y.); (X.H.)
| |
Collapse
|
6
|
A drug delivery system with red fluorescence for the delivery and release of 5-fluorouracil in vitro. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|