1
|
Kurisu M, Imai M. Concepts of a synthetic minimal cell: Information molecules, metabolic pathways, and vesicle reproduction. Biophys Physicobiol 2023; 21:e210002. [PMID: 38803330 PMCID: PMC11128301 DOI: 10.2142/biophysico.bppb-v21.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/29/2024] Open
Abstract
How do the living systems emerge from non-living molecular assemblies? What physical and chemical principles supported the process? To address these questions, a promising strategy is to artificially reconstruct living cells in a bottom-up way. Recently, the authors developed the "synthetic minimal cell" system showing recursive growth and division cycles, where the concepts of information molecules, metabolic pathways, and cell reproduction were artificially and concisely redesigned with the vesicle-based system. We intentionally avoided using the sophisticated molecular machinery of the biological cells and tried to redesign the cells in the simplest forms. This review focuses on the similarities and differences between the biological cells and our synthetic minimal cell concerning each concept of cells. Such comparisons between natural and artificial cells will provide insights on how the molecules should be assembled to create living systems to the wide readers in the field of synthetic biology, artificial cells, and protocells research. This review article is an extended version of the Japanese article "Growth and division of vesicles coupled with information molecules," published in SEIBUTSU-BUTSURI vol. 61, p. 378-381 (2021).
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
2
|
Morozova O, Vasil'eva I, Shumakovich G, Zaitseva E, Yaropolov A. Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase-Mediator System as Compared with Chemical Polymerization. Int J Mol Sci 2023; 24:11374. [PMID: 37511132 PMCID: PMC10380230 DOI: 10.3390/ijms241411374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The conventional chemical polymerization of aniline has been described in multiple publications, while enzymatic polymerization has been poorly explored. A comparative study of the template-assisted enzymatic and chemical polymerization of aniline in a buffer solution of sodium dodecylbenzenesulfonate micelles was performed for the first time. The high-redox potential laccase from the fungus Trametes hirsuta was used as a catalyst and air oxygen served as an oxidant. Potentiometric and spectral methods have shown that oligomeric/polymeric products of the enzymatic polymerization of aniline are synthesized in the conducting emeraldine salt form immediately after the reaction is initiated by the enzyme. The use of the laccase-mediator system enabled a higher rate of enzymatic polymerization and a higher yield of final products. Potassium octocyanomolybdate (IV) served as a redox mediator. The products of the enzymatic polymerization of aniline were studied by the ATR-FTIR, MALDI-TOF and atomic force microscopy methods. The chemical oxidative polymerization of aniline under the same conditions resulted in forming a non-conducting dark brown product.
Collapse
Affiliation(s)
- Olga Morozova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia
| | - Irina Vasil'eva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia
| | - Galina Shumakovich
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia
| | - Elena Zaitseva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander Yaropolov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia
| |
Collapse
|
3
|
Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem 2023; 6:56. [PMID: 36977828 PMCID: PMC10050237 DOI: 10.1038/s42004-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A "synthetic minimal cell" is considered here as a cell-like artificial vesicle reproduction system in which a chemical and physico-chemical transformation network is regulated by information polymers. Here we synthesise such a minimal cell consisting of three units: energy production, information polymer synthesis, and vesicle reproduction. Supplied ingredients are converted to energy currencies which trigger the synthesis of an information polymer, where the vesicle membrane plays the role of a template. The information polymer promotes membrane growth. By tuning the membrane composition and permeability to osmolytes, the growing vesicles show recursive reproduction over several generations. Our "synthetic minimal cell" greatly simplifies the scheme of contemporary living cells while keeping their essence. The chemical pathways and the vesicle reproduction pathways are well described by kinetic equations and by applying the membrane elasticity model, respectively. This study provides new insights to better understand the differences and similarities between non-living forms of matter and life.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Ryosuke Katayama
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladmir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|
4
|
Jasenská D, Kašpárková V, Vašíček O, Münster L, Minařík A, Káčerová S, Korábková E, Urbánková L, Vícha J, Capáková Z, Falleta E, Della Pina C, Lehocký M, Skopalová K, Humpolíček P. Enzyme-Catalyzed Polymerization Process: A Novel Approach to the Preparation of Polyaniline Colloidal Dispersions with an Immunomodulatory Effect. Biomacromolecules 2022; 23:3359-3370. [PMID: 35900922 DOI: 10.1021/acs.biomac.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed─an original one using environmentally friendly and biocompatible horseradish peroxidase─represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.
Collapse
Affiliation(s)
- Daniela Jasenská
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic.,Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Antonín Minařík
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Simona Káčerová
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Eva Korábková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Lucie Urbánková
- Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Jan Vícha
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Zdenka Capáková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Ermelinda Falleta
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Cristina Della Pina
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Marián Lehocký
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic.,Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Kateřina Skopalová
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic.,Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| |
Collapse
|