1
|
Cao C, Shen X, Chen S, He M, Wang H, Ding C, Zhu D, Dong J, Chen H, Huang N, Kuang C, Jin M, Liu X. High-Precision and Rapid Direct Laser Writing Using a Liquid Two-Photon Polymerization Initiator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37316963 DOI: 10.1021/acsami.3c06601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-photon polymerization based direct laser writing (DLW) is an emerging micronano 3D fabrication technology wherein two-photon initiators (TPIs) are a key component in photoresists. Upon exposure to a femtosecond laser, TPIs can trigger the polymerization reaction, leading to the solidification of photoresists. In other words, TPIs directly determine the rate of polymerization, physicochemical properties of polymers, and even the photolithography feature size. However, they generally exhibit extremely poor solubility in photoresist systems, severely inhibiting their application in DLW. To break through this bottleneck, we propose a strategy to prepare TPIs as liquids via molecular design. The maximum weight fraction of the as-prepared liquid TPI in photoresist significantly increases to 2.0 wt %, which is several times higher than that of commercial 7-diethylamino-3-thenoylcoumarin (DETC). Meanwhile, this liquid TPI also exhibits an excellent absorption cross section (64 GM), allowing it to absorb femtosecond laser efficiently and generate abundant active species to initiate polymerization. Remarkably, the respective minimum feature sizes of line arrays and suspended lines are 47 and 20 nm, which are comparable to that of the-state-of-the-art electron beam lithography. Besides, the liquid TPI can be utilized to fabricate various high-quality 3D microstructures and manufacture large-area 2D devices at a considerable writing speed (1.045 m s-1). Therefore, the liquid TPI would be one of the promising initiators for micronano fabrication technology and pave the way for future development of DLW.
Collapse
Affiliation(s)
- Chun Cao
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Xiaoming Shen
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Shixiong Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China
| | - Minfei He
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongqing Wang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Chenliang Ding
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Dazhao Zhu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Jianjie Dong
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
| | - Hongzheng Chen
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ning Huang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Cuifang Kuang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China
| | - Xu Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
5
|
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization. Catalysts 2023. [DOI: 10.3390/catal13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures.
Collapse
|
10
|
D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing. PHOTONICS 2022. [DOI: 10.3390/photonics9030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A two-photon polymerization initiator is a kind of nonlinear optical material. With the demand for more efficient initiators in two-photon polymerization additive manufacturing, there are more and more related studies. In this paper, four conjugate-extended two-photon polymerization initiators with different alkane chain lengths were designed and synthesized, and single-photon, two-photon, and photodegradation experiments were carried out. Additive manufacturing experiments illustrated that the designed molecules can be used as two-photon initiators, and the writing speed can achieve 100,000 μm/s at a laser power of 25 mW. Through theoretical calculation and experimental comparison of the properties of molecules with different conjugation degrees, it was proven that a certain degree of conjugation extension can improve the initiation ability of molecules; however, this improvement cannot be extended infinitely. Solubility tests of different acrylates showed that molecules with different alkane chain lengths have varying solubility. Changing the molecular alkane chain length may be favorable to adapt to different monomers.
Collapse
|