Lalchandani DS, Chenkual L, Sonpasare K, Rajdev B, Naidu VGM, Chella N, Porwal PK. Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design.
Nanomedicine (Lond) 2024;
19:1541-1555. [PMID:
39012199 PMCID:
PMC11321401 DOI:
10.1080/17435889.2024.2364585]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: The study explores the synergistic potential of atorvastatin (ATR) and quercetin (QUER)- loaded solid lipid nanoparticles (SLN) in combating breast cancer. Materials & methods: SLNs were synthesized using a high-shear homogenization method and optimized using Box-Behnken design. The SLNs were characterized and evaluated for their in vitro anticancer activity. Results: The optimized SLN exhibited narrow size distribution (PDI = 0.338 ± 0.034), a particle size of 72.5 ± 6.5 nm, higher entrapment efficiency (<90%), sustained release and spherical surface particles. The in vitro cytotoxicity studies showed a significant reduction in IC50 values on MDA-MB-231 cell lines. Conclusion: We report a novel strategy of repurposing well-known drugs and encapsulating them into SLNs as a promising drug-delivery system against breast cancer.
Collapse