1
|
Tasleem M, Singh V, Tiwari A, Ganesan V, Sankar M. Electrocatalysis Using Cobalt Porphyrin Covalently Linked with Multi-Walled Carbon Nanotubes: Hydrazine Sensing and Hydrazine-Assisted Green Hydrogen Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401273. [PMID: 38958069 DOI: 10.1002/smll.202401273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).
Collapse
Affiliation(s)
- Mohammad Tasleem
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ananya Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Muniappan Sankar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Tang C, Ramírez-Hernández M, Thomas B, Yeh YW, Batson PE, Asefa T. Hierarchically Ordered Nanoporous Carbon with Exclusively Surface-Anchored Cobalt as Efficient Electrocatalyst. SMALL METHODS 2022; 6:e2200519. [PMID: 35680607 DOI: 10.1002/smtd.202200519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
A hierarchically ordered porous carbon electrocatalyst with exclusively surface-anchored cobalt species, dubbed Co@HOPC, is synthesized from polyaniline and cobalt-functionalized silica microparticles templates, and its high electrocatalytic activity for the oxygen evolution reaction (OER) is demonstrated. The material requires a small potential (320 mV) to drive the reaction with a current density of 10 mA cm-2 and a small Tafel slope of 31.2 mV dec-1 . Moreover, Co@HOPC shows better catalytic activity for OER than in situ cobalt-doped and surface cobalt-loaded hierarchically ordered porous carbon materials synthesized by traditional methods. This is due to the abundant surface cobalt species present in Co@HOPC and the material's good electrical conductivity. This work provides a new strategy to utilize functionalized silica microparticles as templates to synthesize hierarchically ordered porous carbon materials with metal-rich surfaces and efficient electrocatalytic activities.
Collapse
Affiliation(s)
- Chaoyun Tang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518060, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yao-Wen Yeh
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Philip E Batson
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Burshtein TY, Tamakuwala K, Sananis M, Grinberg I, Samala NR, Eisenberg D. Understanding hydrazine oxidation electrocatalysis on undoped carbon. Phys Chem Chem Phys 2022; 24:9897-9903. [PMID: 35416204 DOI: 10.1039/d2cp00213b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbons are ubiquitous electrocatalytic supports for various energy-related transformations, especially in fuel cells. Doped carbons such as Fe-N-C materials are particularly active towards the oxidation of hydrazine, an alternative fuel and hydrogen carrier. However, there is little discussion of the electrocatalytic role of the most abundant component - the carbon matrix - towards the hydrazine oxidation reaction (HzOR). We present a systematic investigation of undoped graphitic carbons towards the HzOR in alkaline electrolyte. Using highly oriented pyrolytic graphite electrodes, as well as graphite powders enriched in either basal planes or edge defects, we demonstrate that edge defects are the most active catalytic sites during hydrazine oxidation electrocatalysis. Theoretical DFT calculations support and explain the mechanism of HzOR on carbon edges, identifying unsaturated graphene armchair defects as the most likely active sites. Finally, these findings explain the 'double peak' voltammetric feature observed on many doped carbons during the HzOR.
Collapse
Affiliation(s)
- Tomer Y Burshtein
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Kesha Tamakuwala
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Matan Sananis
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Kadam RG, Zhang T, Zaoralová D, Medveď M, Bakandritsos A, Tomanec O, Petr M, Zhu Chen J, Miller JT, Otyepka M, Zbořil R, Asefa T, Gawande MB. Single Co-Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006477. [PMID: 33783134 DOI: 10.1002/smll.202006477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.
Collapse
Affiliation(s)
- Ravishankar G Kadam
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Tao Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Dagmar Zaoralová
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, 779 00, Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47906, USA
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47906, USA
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, 779 00, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, 779 00, Czech Republic
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47906, USA
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| | - Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Marathwada Campus, Jalna, Mumbai, 431203, India
| |
Collapse
|
5
|
Xie Y, Wang Z, Wang H, Lu L, Subramanian P, Ji S, Kannan P. α‐Co(OH)
2
Thin‐Layered Cactus‐Like Nanostructures Wrapped Ni
3
S
2
Nanowires: A Robust and Potential Catalyst for Electro‐oxidation of Hydrazine. ChemElectroChem 2021. [DOI: 10.1002/celc.202100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yichun Xie
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
- Fujian Yanan Power Co. Ltd. Ningde Fujian 352100 P. R. China
| | - Zining Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lei Lu
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| | | | - Shan Ji
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 P. R. China
| |
Collapse
|
6
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
7
|
Zhang T, Low J, Yu J, Tyryshkin AM, Mikmeková E, Asefa T. A Blinking Mesoporous TiO 2-x Composed of Nanosized Anatase with Unusually Long-Lived Trapped Charge Carriers. Angew Chem Int Ed Engl 2020; 59:15000-15007. [PMID: 32445242 DOI: 10.1002/anie.202005143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/02/2023]
Abstract
A mesoporous TiO2-x material comprised of small, crystalline, vacancy-rich anatase nanoparticles (NPs) shows unique optical, thermal, and electronic properties. It is synthesized using polymer-derived mesoporous carbon (PDMC) as a template. The PDMC pores serve as physical barriers during the condensation and pyrolysis of a titania precursor, preventing the titania NPs from growing beyond 10 nm in size. Unlike most titania nanomaterials, during pyrolysis the NPs undergo no transition from the anatase to rutile phase and they become catalytically active reduced TiO2-x . When exposed to a slow electron beam, the NPs exhibit a charge/discharge behavior, lighting up and fading away for an average period of 15 s for an extended period of time. The NPs also show a 50 nm red-shift in their UV/Vis absorption and long-lived charge carriers (electrons and holes) at room temperature in the dark, even long after UV irradiation. The NPs as photocatalysts show a good activity for CO2 reduction.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Jingxiang Low
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| | - Alexei M Tyryshkin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| | - Eliška Mikmeková
- Institute of Scientific Instruments of the ASCR, Czech Academy of Sciences, Královopolská 147, Brno, 612 64, Czech Republic
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Zhang T, Low J, Yu J, Tyryshkin AM, Mikmeková E, Asefa T. A Blinking Mesoporous TiO
2−
x
Composed of Nanosized Anatase with Unusually Long‐Lived Trapped Charge Carriers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tao Zhang
- Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
| | - Jingxiang Low
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan Hubei 430070 China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan Hubei 430070 China
| | - Alexei M. Tyryshkin
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey 610 Taylor Road Piscataway NJ 08854 USA
| | - Eliška Mikmeková
- Institute of Scientific Instruments of the ASCR Czech Academy of Sciences Královopolská 147 Brno 612 64 Czech Republic
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey 98 Brett Road Piscataway NJ 08854 USA
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey 610 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
9
|
The graphitic carbon nitride/polyaniline/silver nanocomposites as a potential electrocatalyst for hydrazine detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Steps of fronts in chemical engineering: An overview of the publications of FCSE. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Zhang T, Souza IPAF, Xu J, Almeida VC, Asefa T. Mesoporous Graphitic Carbon Nitrides Decorated with Cu Nanoparticles: Efficient Photocatalysts for Degradation of Tartrazine Yellow Dye. NANOMATERIALS 2018; 8:nano8090636. [PMID: 30134560 PMCID: PMC6163193 DOI: 10.3390/nano8090636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
Abstract
A series of mesoporous graphitic carbon nitride (mpg-C3N4) materials are synthesized by directly pyrolyzing melamine containing many embedded silica nanoparticles templates, and then etching the silica templates from the carbonized products. The mass ratio of melamine-to-silica templates and the size of the silica nanoparticles are found to dictate whether or not mpg-C3N4 with large surface area and high porosity form. The surfaces of the mpg-C3N4 materials are then decorated with copper (Cu) nanoparticles, resulting in Cu-decorated mpg-C3N4 composite materials that show excellent photocatalytic activity for degradation of tartrazine yellow dye. The materials’ excellent photocatalytic performance is attributed to their high surface area and the synergistic effects created in them by mpg-C3N4 and Cu nanoparticles, including the Cu nanoparticles’ greater ability to separate photogenerated charge carriers from mpg-C3N4.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
| | - Isis P A F Souza
- Laboratory of Environmental and Agrochemistry, Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá, Paraná 87020-900, Brazil.
| | - Jiahe Xu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
| | - Vitor C Almeida
- Laboratory of Environmental and Agrochemistry, Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá, Paraná 87020-900, Brazil.
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|