1
|
Strenge JT, Smeets R, Nemati F, Fuest S, Rhode SC, Stuermer EK. Biodegradable Silk Fibroin Matrices for Wound Closure in a Human 3D Ex Vivo Approach. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3004. [PMID: 38930373 PMCID: PMC11205513 DOI: 10.3390/ma17123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
In this study, the potential of silk fibroin biomaterials for enhancing wound healing is explored, focusing on their integration into a human 3D ex vivo wound model derived from abdominoplasties. For this purpose, cast silk fibroin membranes and electrospun nonwoven matrices from Bombyx mori silk cocoons were compared to untreated controls over 20 days. Keratinocyte behavior and wound healing were analyzed qualitatively and quantitatively by histomorphometric and immune histochemical methods (HE, Ki67, TUNEL). Findings reveal rapid keratinocyte proliferation on both silk fibroin membrane and nonwoven matrices, along with enhanced infiltration in the matrix, suggesting improved early wound closure. Silk fibroin membranes exhibited a significantly improved early regeneration, followed by nonwoven matrices (p < 0.05) compared to untreated wounds, resulting in the formation of multi-layered epidermal structures with complete regeneration. Overall, the materials demonstrated excellent biocompatibility, supporting cell activity with no signs of increased apoptosis or early degradation. These results underscore silk fibroin's potential in clinical wound care, particularly in tissue integration and re-epithelialization, offering valuable insights for advanced and-as a result of the electrospinning technique-individual wound care development. Furthermore, the use of an ex vivo wound model appears to be a viable option for pre-clinical testing.
Collapse
Affiliation(s)
- Jan Tinson Strenge
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Fateme Nemati
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
- Institute of Bioprocess and Biosystems Engineering, Hamburg University, 21073 Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Sophie Charlotte Rhode
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Ewa Klara Stuermer
- Department for Vascular Medicine, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14030651. [PMID: 35336024 PMCID: PMC8949428 DOI: 10.3390/pharmaceutics14030651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired wound healing can lead to local hypoxia or tissue necrosis and ultimately result in amputation or even death. Various factors can influence the wound healing environment, including bacterial or fungal infections, different disease states, desiccation, edema, and even systemic viral infections such as COVID-19. Silk fibroin, the fibrous structural-protein component in silk, has emerged as a promising treatment for these impaired processes by promoting functional tissue regeneration. Silk fibroin’s dynamic properties allow for customizable nanoarchitectures, which can be tailored for effectively treating several wound healing impairments. Different forms of silk fibroin include nanoparticles, biosensors, tissue scaffolds, wound dressings, and novel drug-delivery systems. Silk fibroin can be combined with other biomaterials, such as chitosan or microRNA-bound cerium oxide nanoparticles (CNP), to have a synergistic effect on improving impaired wound healing. This review focuses on the different applications of silk-fibroin-based nanotechnology in improving the wound healing process; here we discuss silk fibroin as a tissue scaffold, topical solution, biosensor, and nanoparticle.
Collapse
|
3
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
4
|
Ding ZZ, Ma J, He W, Ge ZL, Lu Q, Kaplan DL. Simulation of ECM with Silk and Chitosan Nanocomposite Materials. J Mater Chem B 2017; 5:4789-4796. [PMID: 29098078 PMCID: PMC5662207 DOI: 10.1039/c7tb00486a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a system used to model the design of biomaterial matrices for tissue regeneration. Various biomaterial systems have been developed to mimic the composition or microstructure of the ECM. However, emulating multiple facets of the ECM in these systems remains a challenge. Here, a new strategy is reported which addresses this need by using silk fibroin and chitosan (CS) nanocomposite materials. Silk fibroin was first assembled into ECM-mimetic nanofibers in water and then blended with CS to introduce the nanostructural cues. Then the ratios of silk fibroin and CS were optimized to imitate the protein and glycosaminoglycan compositions. These biomaterial scaffolds had suitable compositions, hierarchical nano-to-micro structures, and appropriate mechanical properties to promote cell proliferation in vitro, and vascularization and tissue regeneration in vivo. Compared to previous silk-based scaffolds, these scaffolds achieved improvements in biocompatibility, suggesting promising applications in the future in tissue regeneration.
Collapse
Affiliation(s)
- Z. Z. Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - J. Ma
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - W. He
- Department of Maxillofacial Surgery, The People’s Hospital, Qinghai 4000115-4, People’s Republic of China
| | - Z. L. Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - Q. Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - D. L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Development of a novel glucosamine/silk fibroin–chitosan blend porous scaffold for cartilage tissue engineering applications. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0492-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Vishwanath V, Pramanik K, Biswas A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:657-74. [DOI: 10.1080/09205063.2016.1148303] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Dunne LW, Iyyanki T, Hubenak J, Mathur AB. Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomater 2014; 10:3630-40. [PMID: 24821141 PMCID: PMC4086749 DOI: 10.1016/j.actbio.2014.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022]
Abstract
Aligned three-dimensional nanofibrous silk fibroin-chitosan (eSFCS) scaffolds were fabricated using dielectrophoresis (DEP) by investigating the effects of alternating current frequency, the presence of ions, the SF:CS ratio and the post-DEP freezing temperature. Scaffolds were characterized with polarized light microscopy to analyze SF polymer chain alignment, atomic force microscopy (AFM) to measure the apparent elastic modulus, and scanning electron microscopy and AFM to analyze scaffold topography. The interaction of human umbilical vein endothelial cells (HUVECs) with eSFCS scaffolds was assessed using immunostaining to assess cell patterning and AFM to measure the apparent elastic modulus of the cells. The eSFCS (50:50) samples prepared at 10MHz with NaCl had the highest percentage of aligned area as compared to other conditions. As DEP frequency increased from 100kHz to 10MHz, fibril sizes decreased significantly. eSFCS (50:50) scaffolds fabricated at 10MHz in the presence of 5mM NaCl had a fibril size of 77.96±4.69nm and an apparent elastic modulus of 39.9±22.4kPa. HUVECs on eSFCS scaffolds formed aligned and branched capillary-like vascular structures. The elastic modulus of HUVEC cultured on eSFCS was 6.36±2.37kPa. DEP is a potential tool for fabrication of SFCS scaffolds with aligned nanofibrous structures that can guide vasculature in tissue engineering and repair.
Collapse
Affiliation(s)
- Lina W Dunne
- Tissue Regeneration and Molecular Cell Engineering Laboratory, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tejaswi Iyyanki
- Tissue Regeneration and Molecular Cell Engineering Laboratory, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin Hubenak
- Tissue Regeneration and Molecular Cell Engineering Laboratory, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anshu B Mathur
- Tissue Regeneration and Molecular Cell Engineering Laboratory, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Abstract
Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.
Collapse
Affiliation(s)
- Naresh Kasoju
- Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
9
|
Kundu J, Mohapatra R, Kundu SC. Silk Fibroin/Sodium Carboxymethylcellulose Blended Films for Biotechnological Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:519-39. [DOI: 10.1163/092050610x487864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Joydip Kundu
- a Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | - Riti Mohapatra
- b Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | - S. C. Kundu
- c Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| |
Collapse
|
10
|
Ye L, Wu X, Mu Q, Chen B, Duan Y, Geng X, Gu Y, Zhang A, Zhang J, Feng ZG. Heparin-Conjugated PCL Scaffolds Fabricated by Electrospinning and Loaded with Fibroblast Growth Factor 2. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:389-406. [PMID: 20566037 DOI: 10.1163/092050610x487710] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lin Ye
- a School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Wu
- b Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Qian Mu
- c School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bing Chen
- d Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Yonghong Duan
- e Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Xue Geng
- f School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongquan Gu
- g Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Aiying Zhang
- h School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jian Zhang
- i Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Zeng-guo Feng
- j School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Das AM. Kinetic Study and Reaction Mechanism of Vinyl Monomer Modified Antheraea assama Silk Composites. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100867g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. M. Das
- North East Institute of Science & Technology, Jorhat 785 006, Assam, India
| |
Collapse
|