Abstract
Half of the world's population is infected with Helicobacter pylori and approximately 20% of infected individuals develop overt clinical disease such as ulcers and stomach cancer. Paradoxically, despite its classification as a class I carcinogen, H. pylori has been shown to be protective against development of asthma, allergy, and esophageal disease. Given these conflicting roles for H. pylori, researchers are attempting to define the environmental, host, and pathogen interactions that ultimately result in severe disease in some individuals. From the bacterial perspective, the toxins, CagA and VacA, have each been shown to be polymorphic and to contribute to disease in an allele-dependent manner. Based on the notable advances that have recently been made in the CagA field, herein we review recent studies that have begun to shed light on the role of CagA polymorphism in H. pylori disease. Moreover, we discuss the potential interaction of CagA and VacA as a mediator of gastric disease.
Collapse