1
|
Gonçalves RA, Holmberg K, Lindman B. Cationic surfactants: A review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Abdulameer Salman A. Cationic carbohydrate-based surfactants derived from renewable resources: Trends in synthetic methods. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
3
|
Song Y, Gao S, Yao Y, Zheng H, Niu Y. Synergism and properties of binary mixtures based on an arginine dodecyl ester surfactant. NEW J CHEM 2022. [DOI: 10.1039/d2nj02680e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties of binary mixtures of new cationic amino acid surfactant arginine dihydrochloride dodecyl ester (ADDE) with alkyl poly glycosides (APGs) were studied systematically by evaluating surface tension, conductivity, dynamic...
Collapse
|
4
|
Jesus CF, Alves AA, Fiuza SM, Murtinho D, Antunes FE. Mini-review: Synthetic methods for the production of cationic sugar-based surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zullo V, Iuliano A, Guazzelli L. Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules 2021; 26:2052. [PMID: 33916695 PMCID: PMC8038380 DOI: 10.3390/molecules26072052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates represent a promising option in transitioning from oil-based chemical resources to renewable ones, with the goal of developing chemistries for a sustainable future. Cellulose, hemicellulose, and largely available monosaccharides already provide useful chemical building blocks, so-called platform chemicals, such as levulinic acid and hydroxymethyl furfural, as well as solvents like cyrene or gamma-valerolactone. Therefore, there is great anticipation for novel applications involving materials and chemicals derived from sugars. In the field of ionic liquids (ILs), sugar-based ILs have been overlooked for a long time, mainly on account of their multistep demanding preparation. However, exploring new strategies for accessing sugar-based ILs, their study, and their exploitation, are attracting increasing interest. This is due to the growing concerns about the negative (eco)toxicity profile of most ILs in conjunction with their non-sustainable nature. In the present review, a literature survey concerning the development of sugar-based ILs since 2011 is presented. Their preparation strategies and thermal behavior analyses, sorted by sugar type, make up the first two sections with the intention to provide the reader with a useful guide. A final overview of the potential applications of sugar-based ILs and their future perspectives complement the present analysis.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
6
|
Kowalczyk I, Pakiet M, Szulc A, Koziróg A. Antimicrobial Activity of Gemini Surfactants with Azapolymethylene Spacer. Molecules 2020; 25:molecules25184054. [PMID: 32899824 PMCID: PMC7571221 DOI: 10.3390/molecules25184054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
A series of 21 azapolymethylene gemini surfactants were obtained. The synthesis of the title surfactants in one- or two-step reaction proceeds with good yields. The structure and the purity of the synthesized compounds were determined by 1H and 13C NMR, ESI-MS spectra, and elemental analysis. Moreover, 2D COSY, HMBC, and HSQC spectra were performed. The minimal inhibitory concentrations (MIC) of the synthesized compounds were determined against fungi: Candida albicans, Aspergillus niger, Penicillium chrysogenum and bacteria: Escherichia coli,Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis. Also, the critical micelle concentrations (CMC) were determined. The relationship between antimicrobial and surface activity and surfactant structure has been determined.
Collapse
Affiliation(s)
- Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (M.P.); (A.S.)
- Correspondence: ; Tel.: +48-61-829-1709
| | - Marta Pakiet
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (M.P.); (A.S.)
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (M.P.); (A.S.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
7
|
Hou S, Jia Z, Kryszczuk K, Chen D, Wang L, Holyst R, Feng X. Joint effect of surfactants and cephalexin on the formation of Escherichia coli filament. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110750. [PMID: 32446103 DOI: 10.1016/j.ecoenv.2020.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Both antibiotics and surfactants commonly exist in natural environment and have generated great concerns due to their biological influence on the ecosystem. A major concern lies in the capacity of antibiotics to induce bacterial filaments formation, which has potential health risks. However, their joint effect is not clear so far. Here, we studied the joint effect of cephalexin (Cex), a typical antibiotic, and differently charged surfactants on the formation of E. coli filaments. Three kinds of surfactants characterized by different charges were used: cationic surfactant (CTAB), anionic surfactant (SDS) and nonionic surfactant (Tween). Data showed that Cex alone caused the formation of E. coli filaments, elongating their maximum profile from ca. 2 μm (a single E. coli cell) to tens of micrometers (an E. coli filament). A joint use of surfactants with Cex could produce even longer E. coli filaments, elongating the maximum length of the bacteria to larger than 100 μm. The capacity order of different surfactants under their optimum concentrations to produce elongated E. coli filaments was Tween > SDS > CTAB. The E. coli filaments were characterized with a normal DNA distribution and a good cell membrane integrity. We measured the stiffness of bacterial cell wall by atomic force microscopy and correlated the elongation capacity of the E. coli filaments to the stiffness of cell wall. Zeta potential measurement indicated that inserting into or being bound to the cell surface in a large quantity was tested not to be the major way that surfactants interacted with bacteria.
Collapse
Affiliation(s)
- Sen Hou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510000, China.
| | - Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China; College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Katarzyna Kryszczuk
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510000, China
| | - Lining Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Robert Holyst
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Zhi L, Li X, Wang H, Xue Y, Zhang Q, Wang X. Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The equilibrium surface properties and dynamic surface tension (DST) are presented for aqueous solutions of novel eco-friendly cationic saccharide surfactants (CnDGPB) at different concentrations and temperatures. The equilibrium surface tension, the DST, the effective diffusion coefficients and the activation barrier of the surfactants are calculated and analyzed. In addition, the general diffusion mechanism of the surfactants is proposed. The equilibrium surface tension results show that the γCMC and CMC values decrease with increasing temperature. The interactions (repulsion forces) between the hydrophobic groups and water molecules decrease with increasing temperature, which results in increased HLB values. This phenomenon causes a higher Amin and lower Γmax. The DST of CnDGPB below and above the CMC is tested by the maximum bubble pressure method at temperature from 25 °C to 45 °C. The adsorption activation energy of CnDGPB is between 3 kJ/mol and 20 kJ/mol. The results show that the final stages of the DST decays are consistent with the activated diffusion-controlled adsorption mechanism.
Collapse
|
9
|
Zhi LF, Yao SS, Li XM, Xue YB, Zhang YZ, Zhang QH. Dynamic surface properties of aqueous media imparted by a sugar-modified organosiloxane surfactant. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1572516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-Fei Zhi
- College of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Shu-Shan Yao
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Xiao-Ming Li
- College of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Yong-Bing Xue
- College of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Yue-Zhong Zhang
- College of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Qing-Hua Zhang
- College of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
10
|
|
11
|
Synthesis, interfacial properties, and antimicrobial activity of a new cationic gemini surfactant. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0133-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|