1
|
Kapich AN, Suzuki H, Hirth KC, Fernández-Fueyo E, Martínez AT, Houtman CJ, Hammel KE. The white rot basidiomycete Gelatoporia subvermispora produces fatty aldehydes that enable fungal manganese peroxidases to degrade recalcitrant lignin structures. Appl Environ Microbiol 2024; 90:e0204423. [PMID: 38483171 PMCID: PMC11022559 DOI: 10.1128/aem.02044-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.
Collapse
Affiliation(s)
| | - Hideki Suzuki
- US Forest Products Laboratory, Madison, Wisconsin, USA
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Kenneth E. Hammel
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
3
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:E613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
4
|
Chowdhury S, Rakshit A, Acharjee A, Saha B. Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants. ChemistrySelect 2019. [DOI: 10.1002/slct.201901160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suman Chowdhury
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Atanu Rakshit
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Animesh Acharjee
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Bidyut Saha
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| |
Collapse
|
5
|
Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, Dyshlovoy SA, von Amsberg G, Krasokhin VB, Stonik VA. Melonoside A: An ω-Glycosylated Fatty Acid Amide from the Far Eastern Marine Sponge Melonanchora kobjakovae. Org Lett 2016; 18:3478-81. [DOI: 10.1021/acs.orglett.6b01678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alla G. Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Vladimir A. Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Aleksandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Sergey A. Dyshlovoy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gunhild von Amsberg
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Vladimir B. Krasokhin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East
Branch of the Russian Academy of Sciences, Vladivostoku 690022, Russia
| |
Collapse
|
6
|
Peddie V, Takada K, Okuda S, Ise Y, Morii Y, Yamawaki N, Takatani T, Arakawa O, Okada S, Matsunaga S. Cytotoxic Glycosylated Fatty Acid Amides from a Stelletta sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2015; 78:2808-2813. [PMID: 26558480 DOI: 10.1021/acs.jnatprod.5b00795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have discovered new glycosylated fatty acid amides, stellettosides, from a Stelletta sp. marine sponge. They were detected through LC-MS analysis of the extract combined with the cytotoxicity assay of the prefractionated sample. Their planar structures were determined by analyses of the NMR and tandem FABMS data. Stellettosides A1 and A2 (1 and 2) as well as stellettosides B1-B4 (3-6) were obtained as inseparable mixtures. Careful analysis of the NMR and tandem FABMS data of each mixture, along with comparison of the tandem FABMS data with that of a synthetic model compound, permitted us to assign the structure of the constituents in the mixture. The absolute configuration of the monosaccharide unit was determined by LC-MS after chiral derivatization. The relative configurations of the vicinal oxygenated methines in the fatty acid chains were assigned by the (1)H NMR data of the isopropylidene derivative. The mixture of stellettosides B1-B4 (3-6) exhibit moderate cytotoxic activity against HeLa cells with an IC50 value of 9 μM, whereas the mixture of stellettosides A1 and A2 (1 and 2) was not active at a concentration of 10 μM.
Collapse
Affiliation(s)
- Victoria Peddie
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University , Niigata 951-8510, Japan
| | - Yuji Ise
- Sugashima Marine Biological Laboratory, Nagoya University , Mie 517-0004, Japan
| | - Yasuhiro Morii
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University , Nagasaki 852-8521, Japan
| | - Nobuhiro Yamawaki
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University , Nagasaki 852-8521, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University , Nagasaki 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University , Nagasaki 852-8521, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R. Surfactants tailored by the class Actinobacteria. Front Microbiol 2015; 6:212. [PMID: 25852670 PMCID: PMC4365757 DOI: 10.3389/fmicb.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.
Collapse
Affiliation(s)
- Johannes H. Kügler
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyBellville, South Africa
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Rudolf Hausmann
- Bioprocess Engineering, Institute of Food Science and Biotechnology, University of HohenheimStuttgart, Germany
| |
Collapse
|
8
|
Bertin MJ, Moeller P, Guillette LJ, Chapman RW. Using machine learning tools to model complex toxic interactions with limited sampling regimes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2728-2736. [PMID: 23402624 DOI: 10.1021/es3033549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A major impediment to understanding the impact of environmental stress, including toxins and other pollutants, on organisms, is that organisms are rarely challenged by one or a few stressors in natural systems. Thus, linking laboratory experiments that are limited by practical considerations to a few stressors and a few levels of these stressors to real world conditions is constrained. In addition, while the existence of complex interactions among stressors can be identified by current statistical methods, these methods do not provide a means to construct mathematical models of these interactions. In this paper, we offer a two-step process by which complex interactions of stressors on biological systems can be modeled in an experimental design that is within the limits of practicality. We begin with the notion that environment conditions circumscribe an n-dimensional hyperspace within which biological processes or end points are embedded. We then randomly sample this hyperspace to establish experimental conditions that span the range of the relevant parameters and conduct the experiment(s) based upon these selected conditions. Models of the complex interactions of the parameters are then extracted using machine learning tools, specifically artificial neural networks. This approach can rapidly generate highly accurate models of biological responses to complex interactions among environmentally relevant toxins, identify critical subspaces where nonlinear responses exist, and provide an expedient means of designing traditional experiments to test the impact of complex mixtures on biological responses. Further, this can be accomplished with an astonishingly small sample size.
Collapse
Affiliation(s)
- Matthew J Bertin
- MUSC/Marine Biomedicine & Environmental Sciences, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA
| | | | | | | |
Collapse
|
9
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
10
|
Sassaki GL, Souza LM, Serrato RV, Cipriani TR, Gorin PAJ, Iacomini M. Application of acetate derivatives for gas chromatography-mass spectrometry: novel approaches on carbohydrates, lipids and amino acids analysis. J Chromatogr A 2008; 1208:215-22. [PMID: 18783777 DOI: 10.1016/j.chroma.2008.08.083] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
Abstract
The structure of glycoconjugates has been determined by several chromatographic methods, however gas chromatography-mass spectrometry (GC-MS) has been widely used to identify and quantify the volatile trimethylsilyl and fluoroacyl derivatives. Adapting the reduction/acetylation strategies, we had performed the derivatization of all monosaccharide class, as well as amino acids and OH-fatty acids as from different glycoconjugates. Uronic acids gave characteristic ions at m/z 143, 156 and 173, and 19 amino acids derivatives, gave molecular ions [M]+ and daughter ions of [M-59]+ and [M-43]+ on electron impact (EI)-MS, which provide their rapid identification.
Collapse
Affiliation(s)
- Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, Curitiba, Paraná, CEP 81531-980, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Dembitsky VM. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 2005; 40:869-900. [PMID: 16329462 DOI: 10.1007/s11745-005-1449-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review article presents 342 aromatic glycosides, isolated from and identified in plants and microorganisms, that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active natural surfactants are good prospects for the future chemical preparation of compounds useful as antioxidant, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been classified into several groups, including simple aromatic compounds, stilbenes, phenylethanoids, phenylpropanoids, naphthalene derivatives, and anthracene derivatives.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Organic Chemistry and School of Pharmacy, Hebrew University, Jerusalem, Israel.
| |
Collapse
|