1
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
2
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
3
|
Zhang N, Kohama K, Miyagawa M, Mansho M, Sugimoto R, Nakashima A, Suzuki K, Kitagaki H. Identification of Monohexosylceramides From Euglena gracilis by Electrospray Ionization Mass Spectrometry. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20942351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To date, the monohexosylceramides present in the eukaryotic alga Euglena gracilis has not been reported. In this study, we extracted and purified a lipid fraction that eluted similarly to other reported monohexosylceramides. The structural determination of the lipid fraction revealed a monohexosylceramide ( m/ z = 889.5 and a loss of m/ z = 162), corresponding to the formula C54H99O8N having moieties corresponding to a monohexose (C6H12O6), a 9-methyl-4,8-sphingadienine (C19H37O2N), and a nonacosanoic acid with 2 double bonds (C29H54O2). This is the first report of the isolation of monohexosylceramides from E. gracilis and will promote its utilization in functional foods and cosmetics.
Collapse
Affiliation(s)
- Nairui Zhang
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Kanae Kohama
- Faculty of Agriculture, Saga University, Saga, Japan
| | | | - Moe Mansho
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Ryota Sugimoto
- Euglena Co., Ltd., Tokyo, Japan
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama, Japan
| | - Ayaka Nakashima
- Euglena Co., Ltd., Tokyo, Japan
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., Tokyo, Japan
- RIKEN Baton Zone Program, Tsurumi-ku, Yokohama, Japan
| | | |
Collapse
|
4
|
Fujiwara K, Yazama H, Donishi R, Koyama S, Fukuhara T, Takeuchi H. Inhibitory Effects of Glucosylceramide on Tumorigenesis Induced by a Carcinogen in Mice. Laryngoscope 2019; 130:E593-E597. [PMID: 31808958 PMCID: PMC7687097 DOI: 10.1002/lary.28449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022]
Abstract
Objective Glucosylceramide (Glu‐Cer), a glycosylated form of ceramide, has been reported to have cytotoxic effects in the cells of various cancers. We previously reported that dietary Glu‐Cer from rice bran had inhibitory effects on human head and neck squamous cell carcinoma (HNSCC) in nonobese diabetes (NOD)/severe combined immunodeficiency (SCID) mice. In HNSCC, preventing recurrence and second primary cancer is required to improve prognosis. The purpose of the present study was to determine whether dietary Glu‐Cer had anticarcinogenic and antitumorigenic effects in a mouse model of HNSCC. Methods A total of 40 CB6F1‐Tg rasH2@Jcl mice were divided into two groups: control and Glu‐Cer. All mice were given 4‐nitroquinoline 1‐oxide for 24 weeks. Control group mice were fed the normal diet without Glu‐Cer. The Glu‐Cer group mice were given a mixture of the normal diet plus 0.25% Glu‐Cer for 24 weeks. Microscopic examination was performed to identify grossly visible preneoplasms and neoplasms in the mouth, pharynx, and esophagus. Epithelial regions were classified as normal tissue, carcinoma in situ (CIS), or SCC; and the number of each type of region was counted. Results Compared with the Glu‐Cer group mice, control group mice more frequently developed individual and multiple tumors of each type, including CIS and SCC, in the mouth, pharynx, or esophagus. Conclusion Tumor development was effectively inhibited by dietary Glu‐Cer derived from rice bran, indicating that this and related compounds show promise as prophylactic agents for human HNSCC. Level of Evidence NA Laryngoscope, 130:E593–E597, 2020
Collapse
Affiliation(s)
- Kazunori Fujiwara
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroaki Yazama
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryouhei Donishi
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Satoshi Koyama
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takahiro Fukuhara
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiromi Takeuchi
- Department of Otolaryngology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
5
|
Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci U S A 2017; 114:E3285-E3294. [PMID: 28373578 DOI: 10.1073/pnas.1618133114] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensing and reacting to tissue damage is a fundamental function of immune systems. Macrophage inducible C-type lectin (Mincle) is an activating C-type lectin receptor that senses damaged cells. Notably, Mincle also recognizes glycolipid ligands on pathogens. To elucidate endogenous glycolipids ligands derived from damaged cells, we fractionated supernatants from damaged cells and identified a lipophilic component that activates reporter cells expressing Mincle. Mass spectrometry and NMR spectroscopy identified the component structure as β-glucosylceramide (GlcCer), which is a ubiquitous intracellular metabolite. Synthetic β-GlcCer activated myeloid cells and induced production of inflammatory cytokines; this production was abrogated in Mincle-deficient cells. Sterile inflammation induced by excessive cell death in the thymus was exacerbated by hematopoietic-specific deletion of degrading enzyme of β-GlcCer (β-glucosylceramidase, GBA1). However, this enhanced inflammation was ameliorated in a Mincle-deficient background. GBA1-deficient dendritic cells (DCs) in which β-GlcCer accumulates triggered antigen-specific T-cell responses more efficiently than WT DCs, whereas these responses were compromised in DCs from GBA1 × Mincle double-deficient mice. These results suggest that β-GlcCer is an endogenous ligand for Mincle and possesses immunostimulatory activity.
Collapse
|
6
|
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis. PLoS One 2016; 11:e0153853. [PMID: 27082428 PMCID: PMC4833283 DOI: 10.1371/journal.pone.0153853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.
Collapse
|
7
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
8
|
Baena A, Gómez-Giraldo L, Carreño LJ. Mecanismos de activación de las células T asesinas naturales invariantes (iNKT). IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Yazama H, Kitatani K, Fujiwara K, Kato M, Hashimoto-Nishimura M, Kawamoto K, Hasegawa K, Kitano H, Bielawska A, Bielawski J, Okazaki T. Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide. Int J Clin Oncol 2014; 20:438-46. [PMID: 25080062 DOI: 10.1007/s10147-014-0734-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/14/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND We previously reported that dietary glucosylceramides show cancer-prevention activity in a mouse xenograft model of human head and neck cancer cells (SCCKN). However, the mechanism was unclear. Ceramides, metabolites of glucosylceramides, induce apoptotic cell death in various malignancies. Here, we investigated the inhibitory effects of dietary glucosylceramides on tumor growth in vivo and in vitro. METHODS SCCKN were subcutaneously inoculated into the right flanks of NOD/SCID mice. Mice were treated with or without dietary glucosylceramides (300 mg/kg) daily for 14 consecutive days after confirmation of tumor progression. Microvessel areas around the tumor were assessed by hematoxylin-eosin staining and immunohistochemistry of CD31, and, as markers for angiogenesis, protein levels of VEGF, VEGF receptor-2, and HIF-1α were assessed by Western blotting. Mass spectrometry was performed to measure the levels of sphingolipids in mouse serum after treatment with dietary glucosylceramides. RESULTS Oral administration of glucosylceramides significantly decreased SCCKN growth in the xenograft model with inhibition of angioinvasion. In tumor-invasive areas, VEGF and HIF-1α in the tumor cells, and VEGF receptor-2 in endothelial cells decreased after treatment with dietary glucosylceramides. Dietary glucosylceramides increased serum levels of sphingosine-based ceramides as compared to the control. In SCCKN and UV♀2 cells, C6-ceramide suppressed the expressions of VEGF, VEGF receptor-2, and HIF-1α in vitro. CONCLUSION These results suggest that dietary glucosylceramides trigger the de novo pathway of ceramide synthesis, indicating that sphingosine-based ceramide suppresses the growth of head and neck tumors through the inhibition of pro-angiogenic signals such as VEGF, VEGF receptor-2, and HIF-1α.
Collapse
Affiliation(s)
- Hiroaki Yazama
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, Nishimachi 86, Yonago, 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Singh AK, Gaur P, Das SN. Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol 2013; 75:250-60. [PMID: 24373798 DOI: 10.1016/j.humimm.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/28/2013] [Accepted: 12/15/2013] [Indexed: 01/05/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of glycolipid-reactive T lymphocytes that share properties with natural killer (NK) cells. These lymphocytes can produce array of cytokines and chemokines that modulate the immune response, and play a pivotal role in cancer, autoimmunity, infection and inflammation. Owing to these properties, NKT cells have gained attentions for its potential use in antitumor immunotherapies. To date several NKT cell-based clinical trials have been performed in patients with cancer using its potent ligand α-galactosylceramide (α-GalCer). However, inconsistent therapeutic benefit, and inevitable health risks associated with drug dose and NKT cell activation have been observed. α-GalCer-activated NKT cells become anergic and produce both Th1 and Th2 cytokines that may function antagonistically, limiting the desired effector functions. Besides, various co-stimulatory and signaling molecules such as programmed death-1 (PD-1; CD279), casitas B-cell lymphoma-b (Cbl-b) and CARMA1 have been shown to be implicated in the induction of NKT cell anergy. In this review, we discuss the role of such key regulators and their functional mechanisms that may facilitate the development of improved approaches to overcome NKT cell anergy. In addition, we describe the evidences indicating that tailored-ligands can optimally activate NKT cells to obtain desired immune responses.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Poonam Gaur
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| |
Collapse
|
11
|
Long J, Zhou B, Li H, Dai Q, Zhang B, Xing S, Zeng Z, Chen W, Yang J. Improvement of HBsAg gene-modified dendritic cell-based vaccine efficacy by optimizing immunization method or the application of β-glucosylceramide. Immunol Invest 2013; 42:137-55. [PMID: 23323523 DOI: 10.3109/08820139.2012.744418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) in China is mostly Hepatitis B virus infection related. The antitumor efficacy of HBsAg gene-modified dendritic cells (DC) has been widely tested both in vitro and in vivo. In this study, we analyzed whether adenoviral vector mediated HBsAg expression would alter cell surface phenotype or autologous T cell stimulating function of mature DCs. Further, the anti-tumor efficacy of pAd-HBsAg-DC-based vaccine was evaluated in mice bearing HBsAg expressing HCC. We also tested whether β-glucosylceramide (β-GC) would enhance the anti-tumor activity of pAd-HBsAg-DC. Results revealed that pAd-HBsAg-DC expressed and secreted HBsAg, while maintaining phenotypic characteristics of mature DCs. Vaccination with pAd-HBsAg-DC conferred specific therapeutic antitumor immunity to animal model bearing HBsAg expressing HCC. The application of β-GC activated mice hepatic NKT cells and enhanced the antitumor activity of pAd-HBsAg-DC. Most importantly, in vivo results showed that the inhibiting effect of pAd-HBsAg-DC vaccination on tumor growth was more significant when applied before tumor inoculation, suggesting that genetically modified DC based therapeutic cancer vaccine may achieve the most optimized antitumor effect when applied before tumor onset, and β-GC may serve as a potent innate immune enhancer for augmenting the antitumor effect of pAd-HBsAg-DC vaccine.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Inafuku M, Nagao K, Inafuku A, Yanagita T, Taira N, Toda T, Oku H. Dietary phosphatidylinositol protects C57BL/6 mice from concanavalin A-induced liver injury by modulating immune cell functions. Mol Nutr Food Res 2013; 57:1671-9. [PMID: 23653180 DOI: 10.1002/mnfr.201200607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/15/2013] [Accepted: 02/15/2013] [Indexed: 11/08/2022]
Abstract
SCOPE Several recent studies have demonstrated that phospholipids (PLs) supplementation can modulate the function of cultured-immune cells. Furthermore, dietary PLs have been shown to ameliorate inflammatory processes and immune responses in arthritic and diabetic murine models, respectively. Thus, the aim of this study was to examine the immune-modulating activities of dietary soybean PLs in mice, with particular emphasis on the immune cell functions. METHODS AND RESULTS Mice were fed semisynthetic diets for 6 weeks, which contained either 7% soybean oil or 5% soybean oil plus 2% of either PL: phosphatidylcholine (PC), phosphatidylinositol (PI), or phosphatidylserine (PS). Production of concanavalin A (Con A)-induced proinflammatory cytokines was significantly decreased in the splenocytes isolated from mice fed PI compared to other lipids. Supplementation of the diet with PI, but not with the other lipids, significantly suppressed the proinflammatory cytokine serum levels and the development of Con A-induced liver damages. CONCLUSION These observations suggest that dietary PI influenced immune functions, resulting in the prevention of pathogenesis and development of the liver injury in mice.
Collapse
Affiliation(s)
- Masashi Inafuku
- Department of Mangroves and Bio-resources, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|