1
|
Calik A, Emami NK, White MB, Dalloul RA. Performance, fatty acid composition, and liver fatty acid metabolism markers of broilers fed genetically modified soybean DP-3Ø5423-1. Poult Sci 2024; 103:103470. [PMID: 38301495 PMCID: PMC10846397 DOI: 10.1016/j.psj.2024.103470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Several genetically modified (GM) plants have been produced and approved by regulatory agencies worldwide for cultivation and commercialization. Soybean and its by-products are major components of poultry diets and approximately 74% of world production is obtained from GM soybean events. The aim of this study was to evaluate the nutrient composition of DP-3Ø5423-1 extruded full-fat soybean meal (FFSBM) and near isoline non-GM control FFSBM included in broiler diets. Also assessed were their effects on bird performance, body composition, intestinal morphology, tissue fatty acid profile, and mRNA abundance of fatty acid metabolism markers. A total of 480 Ross 308 d of hatch birds were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or control FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). No significant interaction (P > 0.05) was observed between treatment groups in terms of performance and carcass composition. Morphological measurements of the jejunum and ileum were not influenced by the SBM treatments. Dietary addition of the DP-3Ø5423-1 FFSBM resulted in higher monounsaturated fatty acid composition of the thigh muscle and abdominal fat. Moreover, dietary treatment had no significant impact on the mRNA abundance of metabolic markers ACCα, FAS, MTTP, SREBP1, PPARα, PPARγ, AMPK-α1, SOD, CAT, and GPx in the liver. In conclusion, our results showed that DP-3Ø5423-1 extruded FFSBM is nutritionally equivalent to non-GM near-isoline counterpart with a comparable genetic background as evidenced by feed analyses except for fatty acid composition. Furthermore, the findings of this study clearly indicate that the examined DP-3Ø5423-1 FFSBM yields similar bird performance as conventional FFSBM.
Collapse
Affiliation(s)
- Ali Calik
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Nima K Emami
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Mallory B White
- School of STEM, Virginia Western Community College, Roanoke, VA 24015, USA
| | - Rami A Dalloul
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
In Vitro Antioxidant Activities of Plant Polyphenol Extracts and Their Combined Effect with Flaxseed on Raw and Cooked Breast Muscle Fatty Acid Content, Lipid Health Indices and Oxidative Stability in Slow-Growing Sasso Chickens. Foods 2022; 12:foods12010115. [PMID: 36613331 PMCID: PMC9818817 DOI: 10.3390/foods12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Adding flaxseed was found to decrease oxidative stability in feed and increase the antioxidant needs of chicken. This has also been associated with a decrease in the nutritional value and oxidative stability of meat if sufficient dietary antioxidants are not included. Furthermore, dietary flaxseed has been explored in fast-growing chickens as such studies are limited with slow-growing chickens. Thus, this study aimed to evaluate the effects of feeding plant polyphenol extracts as an antioxidant alongside flaxseed on fatty acid content, oxidative stability, and lipid health indices in breast muscle of slow-growing Sasso T451A dual-purpose chicken. A total of 126 chickens assigned to six groups (seven replicates of three) were fed on NC (control and no antioxidants), FS (75 g flaxseed and no antioxidants), VE8 (75 g flaxseed and 800 mg vitamin E), TS8 (75 g flaxseed and 800 mg Thymus schimperi), DA8 (75 g flaxseed and 800 mg Dodonaea angustifolia) and CD8 (75 g flaxseed and 800 mg Curcuma domestica) extract per kg diet. Feeding on CD8 and VE8 in raw and TS8, CD8 and VE8 diets in cooked breast muscle increased (p < 0.05) the C22:6n − 3 (DHA) and C20:5n − 3 (EPA) contents compared to the FS diet. Feeding FS increased (p < 0.05) the malondialdehyde (MDA) content in breast muscle, whereas TS8 in cooked and raw and CD8 and DA8 diets in raw breast muscle decreased it (p < 0.05). No added benefit was observed in feeding VE8 over plant extracts in terms of improving fatty acid composition and lipid health indices and reducing lipid oxidation in breast meat.
Collapse
|
3
|
Untea AE, Turcu RP, Saracila M, Vlaicu PA, Panaite TD, Oancea AG. Broiler meat fatty acids composition, lipid metabolism, and oxidative stability parameters as affected by cranberry leaves and walnut meal supplemented diets. Sci Rep 2022; 12:21618. [PMID: 36517513 PMCID: PMC9750998 DOI: 10.1038/s41598-022-25866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
A randomized complete block with a 2 × 3 factorial arrangement was used to design a nutrition experiment conducted for the evaluation of the relation between walnut meal (WM-6% inclusion rate) and cranberry leaves (CL-1% and 2% inclusion rate) supplements and their effects on tissue lipid profile, lipid metabolism indices and oxidative stability of meat. Semi-intensive system conditions were simulated for 240 Ross 308 broilers and the animals were reared on permanent shave litter in boxes of 3 m2 (40 broilers / each group, housed in a single box). The current study results showed that the diets enriched in linolenic acid (LNA) (WM diets) led to broilers meat enriched in LNA, but the synthesis of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) was stimulated when the diets were supplemented with a natural antioxidants source (CL diets). The CL diet also exhibited the most powerful effect in counteracting the oxidative processes of meat.
Collapse
Affiliation(s)
- Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania.
| | - Raluca Paula Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| | - Alexandra Gabriela Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucharest, No. 1, 077015, Balotesti, Ilfov, Romania
| |
Collapse
|
4
|
Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022; 14:nu14091969. [PMID: 35565936 PMCID: PMC9099610 DOI: 10.3390/nu14091969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
The beneficial effects of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on human health are widely known. Humans are rather inefficient in synthesizing n-3 LC-PUFA; thus, these compounds should be supplemented in the diet. However, most Western human diets have unbalanced n-6/n-3 ratios resulting from eating habits and the fact that fish sources (rich in n-3 LC-PUFA) are not sufficient (worldwide deficit ~347,956 t/y) to meet the world requirements. In this context, it is necessary to find new and sustainable sources of n-3 LC-PUFA. Poultry products can provide humans n-3 LC-PUFA due to physiological characteristics and the wide consumption of meat and eggs. The present work aims to provide a general overview of the main strategies that should be adopted during rearing and postproduction to enrich and preserve n-3 LC-PUFA in poultry products. The strategies include dietary supplementation of α-Linolenic acid (ALA) or n-3 LC-PUFA, or enhancing n-3 LC-PUFA by improving the LA (Linoleic acid)/ALA ratio and antioxidant concentrations. Moreover, factors such as genotype, rearing system, transport, and cooking processes can impact the n-3 LC-PUFA in poultry products. The use of a multifactorial view in the entire production chain allows the relevant enrichment and preservation of n-3 LC-PUFA in poultry products.
Collapse
|
5
|
Impacts of nano-emulsified vegetable oil on growth, hemato-biochemical markers, oxidative stress, and gut microbiota of New Zealand white and V-line rabbits. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Kim M, Voy BH. Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front Physiol 2021; 12:755317. [PMID: 34658934 PMCID: PMC8511411 DOI: 10.3389/fphys.2021.755317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.
Collapse
Affiliation(s)
| | - Brynn H. Voy
- Department of Animal Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
7
|
El-Bahr SM, Shousha S, Alfattah MA, Al-Sultan S, Khattab W, Sabeq II, Ahmed-Farid O, El-Garhy O, Albusadah KA, Alhojaily S, Shehab A. Enrichment of Broiler Chickens' Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021; 10:foods10030618. [PMID: 33799454 PMCID: PMC8000725 DOI: 10.3390/foods10030618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the effect of four combinations of dietary linseed oil and lysine mixtures on performance, fatty and amino acid profiles, oxidative stress biomarkers, cell energy and meat quality parameters of broiler chickens. One hundred and sixty broiler chicks were allocated into four groups. Birds of groups 1–4 were fed diets containing optimum lysine and 2% of linseed oil, optimum lysine and 4% of linseed oil, high lysine and 2% of linseed oil, and high lysine and 4% of linseed oil, respectively, for a period of 35 days. High linseed oil or lysine levels did not affect the performance of the tested birds, but the high level of dietary linseed oil decreased the concentrations of muscles’ saturated fatty acids (SFA). The highest values of ω-3 polyunsaturated fatty (ω-3 PUFA) and arachidonic acids with lowest levels of monounsaturated fatty (MUFA) were detected in the muscles of birds fed diets containing high linseed oils and/or lysine levels. High linseed oil or lysine levels provided the best essential amino acid profile and improved antioxidant components as well as cell energy, and tenderness and redness of the meat. Conclusively, high dietary lysine and linseed oil combinations improved the nutritional value, antioxidant status and cell energy of broiler chickens’ meat.
Collapse
Affiliation(s)
- Sabry M. El-Bahr
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21523, Egypt
- Correspondence: or
| | - Saad Shousha
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | | | - Saad Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Wasseem Khattab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (W.K.); (A.S.)
| | - Islam I. Sabeq
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine Benha University, Benha 13736, Egypt;
| | - Omar Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12622, Egypt;
| | - Osama El-Garhy
- Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Khalid A. Albusadah
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.S.); (K.A.A.); (S.A.)
| | - Ahmed Shehab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (W.K.); (A.S.)
| |
Collapse
|
8
|
Viñado A, Castillejos L, Barroeta AC. Soybean lecithin as an alternative energy source for grower and finisher broiler chickens: impact on performance, fatty acid digestibility, gut health, and abdominal fat saturation degree. Poult Sci 2020; 99:5653-5662. [PMID: 33142483 PMCID: PMC7647704 DOI: 10.1016/j.psj.2020.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
An experiment was performed to assess the inclusion of soybean lecithin (SL) in the replacement of soybean oil (SO), for grower and finisher broiler chicken diets (up to 15 d of life), and its effects on performance, fatty acid (FA) absorption, gut health, and saturation degree of the abdominal fat pad (AFP). A total of 1,440 female Ross-308 chickens were distributed in 60 pens and were fed 5 experimental diets. The control diet (T1) was supplemented with SO (grower and finisher diets at 2.00%), and 4 levels of SL were included in replacement: T2 (0.25% in grower and 0.50% in finisher diets), T3 (0.50% in grower and 1.00% in finisher diets), T4 (0.75% in grower and 1.50% in finisher diets), and T5 (1.00% in grower and 2.00% in finisher diets). At day 39, titanium dioxide was added to finisher diets at 5 g/kg to perform a digestibility balance. At day 46, AFP, tissue, and gut digesta samples were collected to characterize FA digestibility, adipose saturation degree, microbial groups, and histomorphometry. No effects were associated with SO replacement by SL on performance (P > 0.05), ileal digestibility of total, saturated and monounsaturated FA (P > 0.05), nor jejunal morphology (P > 0.05). Total replacement of SO by SL reduced ileal absorption of polyunsaturated FA (P < 0.02) and increased jejunal Lactobacillus spp. counts (P = 0.049). Higher levels of SL inclusion (T4 and T5) lowered polyunsaturated FA concentration of the AFP (P = 0.002) and, thus, slightly reduced its unsaturated-to-saturated FA ratio (P = 0.005). Soybean lecithin inclusion did not modify performance parameters, total FA absorption, nor jejunal morphology, however caused changes on polyunsaturated FA absorption, jejunal microbiota, and saturation degree of the AFP. The study demonstrates that soybean lecithin can be included, in combination with or in replacement of soybean oil, as an alternative energy source for grower (up to a 1%) and finisher broiler diets (up to 2%).
Collapse
Affiliation(s)
- A Viñado
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - L Castillejos
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - A C Barroeta
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Wang X, Martin GB, Wen Q, Liu S, Li Y, Shi B, Guo X, Zhao Y, Guo Y, Yan S. Palm oil protects α-linolenic acid from rumen biohydrogenation and muscle oxidation in cashmere goat kids. J Anim Sci Biotechnol 2020; 11:100. [PMID: 33029349 PMCID: PMC7534170 DOI: 10.1186/s40104-020-00502-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background In ruminants, dietary C18:3n-3 can be lost through biohydrogenation in the rumen; and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle, theoretically reducing the deposition of C18:3n-3, the substrate for synthesis of poly-unsaturated fatty acids (n-3 LCPUFA) in muscle. In vitro studies have shown that rumen hydrogenation of C18:3n-3 is reduced by supplementation with palm oil (rich in cis-9 C18:1). In addition, in hepatocytes, studies with neonatal rats have shown that cis-9 C18:1 inhibits the oxidation of C18:3n-3. It therefore seems likely that palm oil could reduce both rumen biohydrogenation of C18:3n-3 and muscle oxidation of C18:3n-3. The present experiment tested whether the addition of palm oil to a linseed oil supplement for goat kids would prevent the losses of C18:3n-3 and thus improve the FA composition in two muscles, Longissimus dorsi and Biceps femoris. To investigate the processes involved, we studied the rumen bacterial communities and measured the mRNA expression of genes related to lipid metabolism in Longissimus dorsi. Sixty 4-month-old castrated male Albas white cashmere kids were randomly allocated among three dietary treatments. All three diets contained the same ingredients in the same proportions, but differed in their fat additives: palm oil (PMO), linseed oil (LSO) or mixed oil (MIX; 2 parts linseed oil plus 1 part palm oil on a weight basis). Results Compared with the LSO diet, the MIX diet decreased the relative abuandance of Pseudobutyrivibrio, a bacterial species that is positively related to the proportional loss rate of dietary C18:3n-3 and that has been reported to generate the ATP required for biohydrogenation (reflecting a decrease in the abundance of rumen bacteria that hydrogenate C18:3n-3 in MIX kids). In muscle, the MIX diet increased concentrations of C18:3n-3, C20:5n-3, C22:6n-3, and n-3 LCPUFA, and thus decreased the n-6/n-3 ratio; decreased the mRNA expression of CPT1β (a gene associated with fatty acid oxidation) and increased the mRNA expression of FADS1 and FADS2 (genes associated with n-3 LCPUFA synthesis), compared with the LSO diet. Interestingly, compared to Longissimus dorsi, Biceps femoris had greater concentrations of PUFA, greater ratios of unsaturated fatty acids/saturated fatty acids (U/S), and poly-unsaturated fatty acids/saturated fatty acids (P/S), but a lesser concentration of saturated fatty acids (SFA). Conclusions In cashmere goat kids, a combination of linseed and palm oils in the diet increases the muscle concentration of n-3 LCPUFA, apparently by decreasing the relative abundance of rumen bacteria that are positively related to the proportional loss rate of dietary C18:3n-3, by inhibiting mRNA expression of genes related to C18:3n-3 oxidation in muscle, and by up-regulating mRNA expression of genes related to n-3 LCPUFA synthesis in muscle, especially in Longissimus dorsi.
Collapse
Affiliation(s)
- Xue Wang
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing, 100193 China.,UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Graeme B Martin
- UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Qi Wen
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Shulin Liu
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Yinhao Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Binlin Shi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Xiaoyu Guo
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Yangdong Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| |
Collapse
|
10
|
Effects of Supplementation of Microalgae ( Aurantiochytrium sp.) to Laying Hen Diets on Fatty Acid Content, Health Lipid Indices, Oxidative Stability, and Quality Attributes of Meat. Foods 2020; 9:foods9091271. [PMID: 32927865 PMCID: PMC7555786 DOI: 10.3390/foods9091271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The present study is conducted to investigate the effects of dietary docosahexaenoic acid (DHA)-rich microalgae (MA, Aurantiochytrium sp.) on health lipid indices, stability, and quality properties of meat from laying hens. A total of 450 healthy 50-wk-old Hy-Line Brown layers were randomly allotted to 5 groups (6 replicates of 15 birds each), which received diets supplemented with 0, 0.5, 1.0, 1.5, and 2.0% MA for 15 weeks. Fatty acid contents and quality properties of breast and thigh muscles from two randomly selected birds per replicate (n = 12) were measured. The oxidative stability of fresh, refrigerated, frozen, and cooked meat was also determined. Results indicated that supplemental MA produced dose-dependent enrichments of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), predominantly DHA, in breast and thigh muscles, with more health-promoting n-6/n-3 ratios (1.87-5.27) and favorable lipid health indices (p < 0.05). MA supplementation did not affect tenderness (shear force) and color (L*, a*, and b* values) of hen meat nor muscle endogenous antioxidant enzymes and fresh meat oxidation (p > 0.05). However, the n-3 LC-PUFA deposition slightly increased lipid oxidation in cooked and stored (4 °C) meat (p < 0.05). In conclusion, MA supplementation improves the nutritional quality of hen meat in terms of lipid profile without compromising meat quality attributes. Appropriate antioxidants are required to mitigate oxidation when such DHA-enriched meat is subjected to cooking and storage.
Collapse
|
11
|
Leskovec J, Levart A, Perić L, Đukić Stojčić M, Tomović V, Pirman T, Salobir J, Rezar V. Antioxidative effects of supplementing linseed oil-enriched diets with α-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poult Sci 2020; 98:6733-6741. [PMID: 31318430 PMCID: PMC6869761 DOI: 10.3382/ps/pez389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022] Open
Abstract
In a previous study, we examined the synergistic effects of the dietary supranutritional supplementation with vitamin E, vitamin C, and Se on the in vivo antioxidative status of broilers under conditions of dietary oxidative stress induced by feeding a diet high in n-3 PUFA. In this study, we examined the effect of their inclusion on the quality characteristics and oxidative stability of raw or cooked meat, both fresh or after a long-term frozen storage. Four hundred 21-day-old Ross 308 male broilers were allocated to 5 experimental groups fed 5% linseed oil-enriched finisher diets (days 21 to 40): Cont (recommended levels of vitamin E, C, and selenium), +E (200 IU vitamin E/kg feed), +C (250 mg vitamin C/kg feed), +Se (0.2 mg selenium/kg feed), or +ECSe (concentrations as in the sole supplementation, combined). Animal performance and carcass characteristics were monitored at the age of 40 D. Breast meat samples of 12 chickens per group were analysed fresh, fresh after frozen storage, cooked fresh, and cooked after frozen storage (2 × 2 factorial design) for parameters of meat quality (water-holding capacity—WHC, pH, and color) and oxidative stability (concentrations of vitamin E, malondialdehyde—MDA, antioxidant capacity of the water-soluble compounds—ACW, and fatty acid composition). Vitamin E alone (+E) and combined with Se and vitamin C (+ECSe) increased the α-tocopherol concentration in breast muscle, and showed similar protective effects against lipid peroxidation measured as MDA regardless of the frozen storage or cooking. The sole supplementation of vitamin C or selenium showed no effects on the meat quality parameters. In conclusion, the dietary supranutritional inclusion of vitamin E inhibited the lipid peroxidation in fresh, frozen stored, cooked fresh, and frozen stored meat in broilers fed with diets rich in n-3 PUFAs. Even though no clear synergistic effects of the supranutritional supplementation of vitamin C and Se with vitamin E were detected, their dietary inclusion did not negatively affect broilers carcass and meat quality parameters.
Collapse
Affiliation(s)
- J Leskovec
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - A Levart
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - L Perić
- Faculty of Agriculture, Department of Animal Science, University of Novi Sad, 21000 Novi Sad, Serbia
| | - M Đukić Stojčić
- Faculty of Agriculture, Department of Animal Science, University of Novi Sad, 21000 Novi Sad, Serbia
| | - V Tomović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - T Pirman
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - J Salobir
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - V Rezar
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Cui X, Gou Z, Fan Q, Li L, Lin X, Wang Y, Jiang S, Jiang Z. Effects of dietary perilla seed oil supplementation on lipid metabolism, meat quality, and fatty acid profiles in Yellow-feathered chickens. Poult Sci 2020; 98:5714-5723. [PMID: 31376347 DOI: 10.3382/ps/pez358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effect of the dietary replacement of 1% lard (CT) with 1% perilla oil (PO), 0.9% perilla oil + 0.1% anise oil (PA), or 0.9% perilla oil + 0.1% ginger oil (PG) on indices of lipid metabolism, antioxidant capacity, meat quality, and fatty acid profiles from Yellow-feathered chickens at day 63. Compared with the CT chickens, those given perilla oil had decreased (P < 0.05) plasma lipid levels including triglycerides (TG), total cholesterol (TCH), and low-density lipoprotein cholesterol (LDL-C). Hepatic TG, TCH levels, and fatty acid synthase activity were also decreased (P < 0.05) in chickens fed diets containing perilla oil. Abdominal fat percentage was significantly decreased in birds fed the PG compared to CT diets. Birds fed the PA or PG diets had increased (P < 0.05) hepatic total SOD, glutathione peroxidase, and glutathione-S-transferase than in chickens given PO alone. In addition, the content of reduced glutathione (GSH) in breast muscle was lower (P < 0.05) in birds fed PO compared with those given PG, and the reverse was true for content of malondialdehyde. Compared with the CT diet, the PO diet decreased breast muscle shear values and increased yellowness (b*) of breast muscle (P < 0.05). Birds fed the PA or PG diets had meat with better overall acceptability than those fed the CT diet. Chickens fed perilla oil diets exhibited higher contents of α-linolenic acid (C18:3n-3), DHA (22:6n-3), polyunsaturated fatty acids, and n-3 fatty acids, together with a lower content of myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), total saturated fatty acids, and n-6/n-3 ratio compared to controls (P < 0.05). These findings indicate that perilla oil has the potential to decrease lipid-related indices and improve fatty acid profiles of breast meat in chickens without adverse effect on antioxidant status or meat quality; this was even better when perilla oil was given together with anise oil or ginger oil.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Long Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Maharjan S, Rayamajhee B, Chhetri VS, Sherchan SP, Panta OP, Karki TB. Microbial quality of poultry meat in an ISO 22000:2005 certified poultry processing plant of Kathmandu valley. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2019. [DOI: 10.1186/s40550-019-0078-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractPoultry meat can be contaminated by different types of microorganisms during processing in processing plant. The microbiological quality of chicken carcasses and along with processing steps and environmental condition was analyzed in this study in an ISO 22000:2005 certified poultry processing plant of Kathmandu. Standard plate count method was applied for the enumeration and detection of total mesophilic bacteria, total coliform, total faecal coliform, Staphylococcus load along with selected pathogens like Salmonella spp., S. aureus, Escherichia coli, Clostridium perfringens, and Listeria spp. in chicken meat at four processing step (evisceration, final washing, frozen and market). It was observed that the level of microbial load decreased with subsequent processing phases in poultry processing plant where high level of bacteria were reduced during final washing and frozen phase. After processing poultry meat in an ISO 22000:2005 certified meat processing plant, total aerobic mesophilic count, total coliform count, total faecal coliform count, total Staphylococcus count were decreased from 6.92 to 4.45 log CFU/g, 3.49 to 2.19 log CFU/g, 2.41 to nil log CFU/g, and 3..43 to 1.99 log CFU/g respectively. Pathogenic bacteria like Salmonella spp., C. perfringens, and Listeria spp. were absent in chicken meat at the fourth processing step. Prevalence of E. coli was reduced from 37.4% to 10.2%, whereas S. aureus was decreased from 18.57% to 17.1%. It was concluded that the final washing and freezing steps were the Critical Control Point (CCP) to control microbial hazards in poultry processing phase.
Collapse
|
14
|
Viñado A, Castillejos L, Rodriguez-Sanchez R, Barroeta AC. Crude soybean lecithin as alternative energy source for broiler chicken diets. Poult Sci 2019; 98:5601-5612. [PMID: 31222203 DOI: 10.3382/ps/pez318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two experiments were conducted to evaluate the use of crude soybean lecithin (L) as an alternative energy source in broiler feeding and to study its influence on performance, fatty acid (FA) digestibility between 9 to 11 D and 36 to 37 D, feed AME content, and the FA profile of the abdominal fat pad (AFP). A basal diet was supplemented at 3% with soybean oil (S; experiment 1) or a monounsaturated vegetable acid oil (A; experiment 2) and increasing amounts of L (1, 2, and 3%) were included in replacement. The inclusion of L did not modify performance results (P > 0.05). In starter diets, the replacement of S by L reduced feed AME content (P < 0.001) and lowered PUFA digestibility (P = 0.028), whereas in the grower-finisher phase, a blend of 2% of S and 1% of L did not modify feed AME content or FA digestibility. When L was included instead of A, no effects on feed AME value and total FA digestibility (P > 0.05) were shown in the starter phase, whereas in grower-finisher diets, a blending of 2% of A and 1% of L enhanced feed AME content (P < 0.001) and total FA digestibility (P = 0.001). The FA profile of the AFP reflected the FA composition of the diets. Crude soybean lecithin represents an alternative energy source for broiler chickens, and it can be used in growing-finishing diets in replacement of 1% S. The best option to include both alternative fats (L and A) was 2% of L with 1% of A in starter diets and 1% of L with 2% of A in grower-finisher diets because they showed positive synergic effects. The results suggest that dietary FA profile have a bigger impact on the AFP saturation degree than the different dietary lipid molecular structures.
Collapse
Affiliation(s)
- A Viñado
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - L Castillejos
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - R Rodriguez-Sanchez
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - A C Barroeta
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
15
|
Production of omega-3 fatty acid-enriched broiler chicken meat by the application of nanoencapsultsed flaxseed oil prepared via ultrasonication. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Fatty acid composition of liver and breast meat of quails fed diets containing black cumin (Nigella sativa L.) and/or coriander (Coriandrum sativum L.) seeds as unsaturated fatty acid sources. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Wolf C, Messadène-Chelali J, Ulbrich SE, Kreuzer M, Giller K, Bérard J. Replacing sunflower oil by rumen-protected fish oil has only minor effects on the physico-chemical and sensory quality of Angus beef and beef patties. Meat Sci 2019; 154:109-118. [PMID: 31026718 DOI: 10.1016/j.meatsci.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
In the present study, the effects of feeding 450 g/day of rumen-protected fish oil (FO) compared to sunflower oil (SO) to Angus heifers (60 g/kg total intake) were quantified. Animal performance was not affected whereas the physico-chemical meat quality, assessed in three muscles, was slightly affected by diet. The oxidative shelf life of the perirenal fat declined with FO compared to SO. Despite the formerly shown increased n-3 fatty acid proportions of meat due to FO supplementation, a trained sensory panel identified an only slightly more intense fishy flavour in grilled steaks and beef patties from the FO compared to the SO group. In FO compared to SO patties, flavour intensity was more pronounced. The perception of off-flavours was negligible and differences between muscles were larger than between diets. In conclusion, supplementing ruminants with FO containing nutritionally beneficial n-3 fatty acids results in few side-effects on meat quality, restricted to quite faint off-flavours and a shorter fat shelf life.
Collapse
Affiliation(s)
- C Wolf
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | | | - S E Ulbrich
- ETH Zurich, Institute of Agricultural Sciences, Animal Physiology, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K Giller
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | - J Bérard
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| |
Collapse
|
18
|
Rebolledo OFP, Barrera JEM, Márquez JG, Vázquez AR, Casillas ACG. Hematology and Histopathology of Broiler Chickens Supplemented with Tuna Black Flour. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Forte C, Branciari R, Pacetti D, Miraglia D, Ranucci D, Acuti G, Balzano M, Frega N, Trabalza-Marinucci M. Dietary oregano (Origanum vulgare L.) aqueous extract improves oxidative stability and consumer acceptance of meat enriched with CLA and n-3 PUFA in broilers. Poult Sci 2018; 97:1774-1785. [DOI: 10.3382/ps/pex452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023] Open
|
20
|
Dietary fatty acids sex-specifically modulate guinea pig postnatal development via cortisol concentrations. Sci Rep 2018; 8:471. [PMID: 29323260 PMCID: PMC5765112 DOI: 10.1038/s41598-017-18978-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty acids potentially play a major role in this context because PUFAs positively affect HPA-axis functions and a shift towards SFAs may impair body homeostasis. Here we show that dietary PUFAs positively affect postnatal body mass gain and diminish negative glucocorticoid-effects on structural growth rates in male guinea pigs. In contrast, SFAs increased glucocorticoid concentrations, which positively affected testes size and testosterone concentrations in males, but limited their body mass gain and first year survival rate. No distinct diet-related effects were detectable on female growth rates. These results highlight the importance of PUFAs in balancing body homeostasis during male's juvenile development, which clearly derived from a sex-specific energetic advantage of dietary PUFA intakes compared to SFAs.
Collapse
|
21
|
Torchon ET, Das S, Beckford RC, Voy BH. Enriching the Starter Diet in n-3 Polyunsaturated Fatty Acids Reduces Adipocyte Size in Broiler Chicks. Curr Dev Nutr 2017; 1:e001644. [PMID: 29955687 PMCID: PMC5998788 DOI: 10.3945/cdn.117.001644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/14/2022] Open
Abstract
Epidemiologic studies associate perinatal intake of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) with reduced adiposity in children, suggesting that these fatty acids may alter adipose tissue development. The objective of this study was to determine whether enriching the perinatal diet in EPA and DHA reduces fat deposition in young chicks. Cobb 500 broiler chicks were fed isocaloric diets containing fat (8% wt:wt) from fish oil (FO), lard, canola oil, or flaxseed oil from 7 to 30 d of age. Adiposity (abdominal fat pad weight/body weight) at 30 d was not significantly affected by diet, but FO significantly reduced adipocyte size, increasing the abundance of small adipocytes. Plasma nonesterified fatty acid concentrations suggest that reduced adipocyte size was due, in part, to enhanced mobilization of fatty acids from adipose tissue. Our work indicates that dietary EPA and DHA effectively reduce the size of developing adipocytes in juveniles, which may limit adipose deposition and provide metabolic benefits.
Collapse
Affiliation(s)
| | - Suchita Das
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | - Brynn H Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN
| |
Collapse
|
22
|
Kanakri K, Carragher J, Hughes R, Muhlhausler B, Gibson R. The Effect of Different Dietary Fats on the Fatty Acid Composition of Several Tissues in Broiler Chickens. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khaled Kanakri
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - John Carragher
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - Robert Hughes
- South Australian Research and Development Institute (SARDI) Roseworthy CampusRoseworthySA 5371Australia
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy CampusRoseworthySA 5371Australia
| | - Beverly Muhlhausler
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| | - Robert Gibson
- FOODplus Research Centre School of Agriculture, Food and Wine The University of Adelaide Waite CampusUrrbraeSA 5064Australia
| |
Collapse
|
23
|
Manterys A, Franczyk-Zarow M, Czyzynska-Cichon I, Drahun A, Kus E, Szymczyk B, Kostogrys RB. Haematological parameters, serum lipid profile, liver function and fatty acid profile of broiler chickens fed on diets supplemented with pomegranate seed oil and linseed oil. Br Poult Sci 2016; 57:771-779. [PMID: 27636015 DOI: 10.1080/00071668.2016.1219977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to determine effect of pomegranate seed oil (PSO) and linseed oil (LO) on haematological parameters, serum lipid profile and liver enzymes as well as fatty acids profile of adipose tissue in broilers. Broilers (n = 400) were fed on diets containing graded PSO levels (0.0%, 0.5%, 1.0%, 1.5%) with or without 2% LO. After 6 weeks of feeding, 6 male broilers from each group were slaughtered and abdominal fat, liver and blood samples were collected. Mixtures of pomegranate seed oil (0.5%, 1%) with linseed oil increased white blood cell level in broilers. Total cholesterol was elevated after LO supplementation whereas administration of PSO (1.5%) significantly decreased this parameter. PSO administration caused c9,t11 conjugated linoleic acid (CLA) concentration-dependent deposition in adipose tissue. By LO addition α-linolenic acid (ALA) content was enhanced, decreasing the n-6/n-3 ratio. PSO and ALA also affected oleic acid proportion in adipose tissue. Neither pomegranate seed oil nor linseed oil had any effect on liver parameters. Pomegranate seed oil had no negative effects on broiler health status and can be considered as a functional poultry meat component.
Collapse
Affiliation(s)
- A Manterys
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture in Cracow , Cracow , Poland
| | - M Franczyk-Zarow
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture in Cracow , Cracow , Poland
| | - I Czyzynska-Cichon
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture in Cracow , Cracow , Poland
| | - A Drahun
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture in Cracow , Cracow , Poland
| | - E Kus
- b Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University , Cracow , Poland
| | - B Szymczyk
- c Department of Animal Nutrition and Feed Science , National Research Institute of Animal Production , Balice , Poland
| | - R B Kostogrys
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture in Cracow , Cracow , Poland
| |
Collapse
|
24
|
Cocktail supplement with rosiglitazone: a novel inducer for chicken preadipocyte differentiation in vitro. Biosci Rep 2016; 36:BSR20160049. [PMID: 27638500 PMCID: PMC5293590 DOI: 10.1042/bsr20160049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023] Open
Abstract
Chicken preadipocytes cultured in cocktail supplement with rosiglitazone resulted in a marked increase in lipid droplet accumulation, glycerol-3-phosphate dehydrogenase (GPDH) activity and mRNA expression of adipocyte fatty acid-binding protein (aP2), G0/G1 switch gene 2 (G0S2), peroxisome proliferator-activated receptor γ (PPARγ) and lipolysis. The present study provides a novel induction method for in vitro chicken preadipocyte differentiation. The preadipocyte differentiation biological process involves a cascade of transcriptional events that culminates in the expression of peroxisome proliferator-activated receptor (PPAR) γ. The differentiation cocktail [insulin (INS), dexamethasone (DEX) and isobutylmethylxanthine (IBMX)] can induce preadipocyte differentiation in mammals, but it is insufficient for chicken (Gallus gallus) adipogenesis. Oleate can induce chicken preadipocyte differentiation, but these differentiated preadipocytes may not be fully functional. The objective of the current study was to evaluate whether chicken preadipocytes can be induced to mature adipocytes by a novel induction method using differentiation cocktail supplemented with PPARγ agonist(s). Chicken preadipocytes cultured in cocktail supplemented with rosiglitazone or troglitazone resulted in a marked increase in lipid droplet accumulation (P<0.05), glycerol-3-phosphate dehydrogenase (GPDH) activity (P<0.05), mRNA expression level of adipocyte fatty acid-binding protein (aP2; P<0.05), G0/G1 switch gene 2 (G0S2; P<0.05) and lipolysis (P<0.05). In addition, supplementation of the cocktail with rosiglitazone promoted PPARγ mRNA expression (P<0.05). In conclusion, our data indicated that chicken preadipocytes can be induced to mature adipocytes using differentiation cocktail supplemented with rosiglitazone. The results of the present study provide a novel induction method for in vitro chicken preadipocyte differentiation.
Collapse
|
25
|
Wu Z, Zhang Q, Li N, Pu Y, Wang B, Zhang T. Comparison of critical methods developed for fatty acid analysis: A review. J Sep Sci 2016; 40:288-298. [DOI: 10.1002/jssc.201600707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Zhuona Wu
- Experiment Center for Teaching and Learning; Shanghai University of Traditional Chinese Medicine; Shanghai China
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Qi Zhang
- Experiment Center for Teaching and Learning; Shanghai University of Traditional Chinese Medicine; Shanghai China
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Ning Li
- Division of Life Science; HKUST Shenzhen Research Institute; Shenzhen China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Bing Wang
- Experiment Center for Teaching and Learning; Shanghai University of Traditional Chinese Medicine; Shanghai China
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Tong Zhang
- Experiment Center for Teaching and Learning; Shanghai University of Traditional Chinese Medicine; Shanghai China
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
26
|
Rostami A, Zamani Moghaddam AK, Hassanpour H, Khajali F. Pulmonary hypertension and right ventricular failure in broiler chickens reared at high altitude is affected by dietary source of n-6 and n-3 fatty acids. J Anim Physiol Anim Nutr (Berl) 2016; 100:701-6. [PMID: 26849162 DOI: 10.1111/jpn.12432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
The present study evaluated the development of pulmonary hypertension and right ventricular failure in broiler chickens reared at high altitude (2100 m) as affected by dietary intake of n-3 and n-6 fatty acid sources. Flax oil and soy oil were used as sources of n-3 and n-6 fatty acids, respectively, either with or without α-tocopheryl acetate. A total of 192 day-old broiler chicks (Ross 308) were used in a completely randomized design using isoenergetic and isonitrogenous experimental diets. Results showed that dietary flax oil significantly (p < 0.05) improved feed conversion ratio during 21-42 days of age. However, body weight gain did not significantly differ among the experimental groups in entire trial. Birds received flax oil had significantly higher serum concentration of nitric oxide (NO) but they had lower serum concentration of malondialdehyde when compared with their counterparts fed with soy oil. Liver and abdominal fat weights were significantly (p < 0.05) reduced by substitution of soy oil for flax oil. The right-to-total ventricle weight ratio (RV/TV) and mortality from pulmonary arterial hypertension (PAH) were significantly (p < 0.05) decreased in birds that received flax oil. In conclusion, n-3 fatty acids could significantly reduce RV:TV and PAH mortality in birds by increasing circulatory level of NO and suppressing hepatic lipogenesis.
Collapse
Affiliation(s)
- A Rostami
- Department of Clinical Sciences, Shahrekord University, Shahrekord, Iran
| | | | - H Hassanpour
- Department of Basic Science, Shahrekord University, Shahrekord, Iran
| | - F Khajali
- Department of Animal Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
27
|
Vilarrasa E, Guardiola F, Codony R, Esteve-Garcia E, Barroeta A. Use of combinations of re-esterified oils, differing in their degree of saturation, in broiler chicken diets. Poult Sci 2015; 94:1539-48. [DOI: 10.3382/ps/pev140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
|
28
|
Gladyshev MI, Makhutova ON, Gubanenko GA, Rechkina EA, Kalachova GS, Sushchik NN. Livers of terrestrial production animals as a source of long-chain polyunsaturated fatty acids for humans: An alternative to fish? EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michail I. Gladyshev
- Institute of Biophysics of Siberian Branch of Russian Academy of Science; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| | - Olesia N. Makhutova
- Institute of Biophysics of Siberian Branch of Russian Academy of Science; Krasnoyarsk Russia
| | | | | | - Galina S. Kalachova
- Institute of Biophysics of Siberian Branch of Russian Academy of Science; Krasnoyarsk Russia
| | - Nadezhda N. Sushchik
- Institute of Biophysics of Siberian Branch of Russian Academy of Science; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
29
|
Shen Y, Wan H, Zhu J, Fang Z, Che L, Xu S, Lin Y, Li J, Wu D. Fish Oil and Olive Oil Supplementation in Late Pregnancy and Lactation Differentially Affect Oxidative Stress and Inflammation in Sows and Piglets. Lipids 2015; 50:647-58. [DOI: 10.1007/s11745-015-4024-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/14/2015] [Indexed: 01/15/2023]
|
30
|
LeMieux MJ, Kalupahana NS, Scoggin S, Moustaid-Moussa N. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. J Nutr 2015; 145:411-7. [PMID: 25733455 DOI: 10.3945/jn.114.202952] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Obesity is associated with an overexpansion of adipose tissue, along with increases in blood pressure, glycemia, inflammation, and thrombosis. Research to develop nutritional interventions to prevent or treat obesity and its associated diseases is greatly needed. Previously, we demonstrated the ability of eicosapentaenoic acid (EPA) to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation in mice. OBJECTIVE The objective of the current study was to determine the mechanisms mediating the anti-inflammatory and antilipogenic actions of EPA. METHODS In a previous study, male C57BL/6J mice were fed a low-fat diet (10% of energy from fat), an HF diet (45% of energy from fat), or an HF diet supplemented with EPA (45% of energy from fat; 36 g/kg EPA; HF+EPA) for 11 wk or an HF diet for 6 wk and then switched to the HF+EPA diet for 5 wk. In this study, we used histology/immunohistochemistry, gene expression, and metabolomic analyses of white adipose tissue from these mice. In addition, cultured mouse 3T3-L1 adipocytes were treated with 100 μM EPA for 48 h and then used for extracellular flux assays with untreated 3T3-L1 adipocytes used as a control. RESULTS Compared with the HF diet, the HF+EPA diet significantly reduced body weight, adiposity, adipocyte size, and macrophage infiltration into adipose tissue. No significant differences in overall body weight or fat pad weights were observed between HF-fed mice vs. those fed the HF+EPA diet for a short time after first inducing obesity with the HF diet. Interestingly, both histology and immunohistochemistry results showed a significantly lower mean adipocyte size and macrophage infiltration in mice fed the HF diet and then switched to the HF+EPA diet vs. those fed HF diets only. This indicated that EPA was able to prevent as well as reverse HF-diet-induced adipocyte inflammation and hypertrophy and that some of the metabolic effects of EPA were independent of body weight or adiposity. In addition, adipose tissue metabolomic data and cultured adipocyte extracellular flux bioenergetic assays indicated that EPA also regulated mitochondrial function by increasing fatty acid oxidation and oxygen consumption, respectively. CONCLUSION With the use of mice and cultured adipocytes, we showed that EPA ameliorates HF-diet effects at least in part by increasing oxygen consumption and fatty acid oxidation and reducing adipocyte size, adipogenesis, and adipose tissue inflammation, independent of obesity.
Collapse
Affiliation(s)
- Monique J LeMieux
- Department of Nutritional Sciences, College of Human Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX; and
| | - Nishan S Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Shane Scoggin
- Department of Nutritional Sciences, College of Human Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX; and
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, College of Human Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX; and
| |
Collapse
|
31
|
Oleate promotes differentiation of chicken primary preadipocytes in vitro. Biosci Rep 2014; 34:BSR20130120. [PMID: 27919046 PMCID: PMC3917231 DOI: 10.1042/bsr20130120] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
In addition to providing energy and constituting cell membrane, fatty acids also play an important role in adipocyte differentiation and lipid metabolism. As an important member of monounsaturated fatty acids, oleate, together with other components, is widely used to induce chicken preadipocyte differentiation. However, it is not clear whether oleate alone can induce chicken preadipocyte differentiation. In the present study, four different treatments were designed to test this question: basal medium, IDX [insulin, dexamethasone and IBMX (isobutylmethylxanthine)], oleate and IDX plus oleate. Cytoplasmic lipid droplet accumulation and mRNA expression for adipogenesis-related genes were monitored. After treatment of oleate on chicken preadipocytes, apparent lipid droplet formation and lipid accumulation were observed, accompanied by increasing expression of PPARγ (peroxisome proliferator-activated receptor-γ) and AFABP (adipocyte fatty acid-binding protein), but decreasing level of GATA2 (GATA-binding protein 2). In contrast, for cells cultured in the basal medium with or without IDX supplementation, lipid droplet barely occurred. These results suggest that exogenous oleate alone can act as an inducer of preadipocyte differentiation into adipocytes. Our results suggest that oleate alone can act as a direct inducer of chicken preadipocyte differentiation by elevating expression of key positive regulators and suppressing expression of negative regulator of adipogenesis.
Collapse
|