1
|
Huang D, Wang Y, Ding H, Zhao H. Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. BIOLOGY 2024; 13:634. [PMID: 39194572 DOI: 10.3390/biology13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Colostrum intake is a crucial determinant of survival in newborn rabbits. Neonates rely entirely on passive immunity transfer from their mothers while suckling colostrum. The goal of this study was to explore the protein differences of rabbit milk during different lactation periods. Our findings showed that the daily milk yield exhibited an increasing trend from the 2nd to the 21st day of lactation. A data-independent acquisition proteomics approach identified a total of 2011 proteins. Significantly, different abundances were found for 525 proteins in the colostrum and the mature milk samples. Eleven differentially abundant proteins (DAPs) were examined using parallel reaction monitoring, which verified the reliability of the proteomic data. Gene Ontology analysis revealed that these DAPs were primarily associated with glycosyltransferase activity, macromolecule transmembrane transporter activity, and regulation of acute inflammatory response. The dominant metabolic pathways of the DAPs involve the complement and coagulation cascades. A protein-protein interaction analysis identified apolipoprotein B, apolipoprotein A1, triose phosphate isomerase 1, and albumin as the hub proteins responsible for distinguishing differences between biological properties in rabbit colostrum and mature milk. These findings enhance our comprehension of the rabbit milk proteome, particularly in expanding our knowledge regarding the requirements of neonatal rabbits.
Collapse
Affiliation(s)
- Dongwei Huang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuanlang Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haisheng Ding
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Huiling Zhao
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Kim T, Bae M, Lee J, Ghassemi Nejad J, Lee H. Dietary supplementation of phytoncide and soybean oil increases milk conjugated linoleic acid and depresses methane emissions in Holstein dairy cows. Sci Rep 2024; 14:5439. [PMID: 38443469 PMCID: PMC10914803 DOI: 10.1038/s41598-024-53799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The objective of this study was to determine whether adding phytoncide oil (PO) and soybean oil (SBO) to the dairy cow diet could increase milk conjugated linoleic acid (CLA) and depress methane (CH4) emissions in Holstein dairy cows. Rumen fermentation was conducted at four levels of SBO (0, 1, 2, and 4%, on DM basis) and two levels of PO (0 and 0.1%, on DM basis) with in vitro experiment. To evaluate blood parameters, fecal microbe population, milk yield and fatty acid compositions, and CH4 production, in vivo experiment was conducted using 38 Holstein dairy cows divided into two groups of control (fed TMR) and treatment (fed TMR with 0.1% PO and 2% SBO as DM basis). In the in vitro study (Experiment 1), PO or SBO did not affect rumen pH. However, SBO tended to decrease ruminal ammonia-N (p = 0.099). Additionally, PO or SBO significantly decreased total gas production (p = 0.041 and p = 0.034, respectively). Both PO and SBO significantly decreased CH4 production (p < 0.05). In addition, PO significantly increased both CLA isomers (c9, t11 and t10, c12 CLA) (p < 0.001). Collectively, 0.1% PO and 2% SBO were selected resulting in most effectively improved CLA and decreased CH4 production. In the in vivo study (Experiment 2), 0.1% PO with 2% SBO (PSO) did not affect complete blood count. However, it decreased blood urea nitrogen and magnesium levels in blood (p = 0.021 and p = 0.01, respectively). PSO treatment decreased pathogenic microbes (p < 0.05). It increased milk yield (p = 0.017) but decreased percentage of milk fat (p = 0.013) and MUN level (p < 0.01). In addition, PSO treatment increased both the concentration of CLA and PUFA in milk fat (p < 0.01). Finally, it decreased CH4 emissions from dairy cows. These results provide compelling evidence that a diet supplemented with PSO can simultaneously increase CLA concentration and decrease CH4 production with no influence on the amount of milk fat (kg/day) in Holstein dairy cows.
Collapse
Affiliation(s)
- TaeBin Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - MunHee Bae
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - JaeSung Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - HongGu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Liu J, Shen J, Zong J, Fan Y, Cui J, Peng D, Jin Y. Lithium Chloride Promotes Endogenous Synthesis of CLA in Bovine Mammary Epithelial Cells. Biol Trace Elem Res 2024; 202:513-526. [PMID: 37099221 DOI: 10.1007/s12011-023-03679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce. Previous research found that the key enzyme, stearoyl-CoA desaturase (SCD) for the synthesis of CLA, can be expressed more actively in bovine mammary epithelial cells (MAC-T) when lithium chloride (LiCl) is present. This study investigated whether LiCl can encourage CLA synthesis in MAC-T cells. The results showed that LiCl effectively increased SCD and proteasome α5 subunit (PSMA5) protein expression in MAC-T cells as well as the content of CLA and its endogenous synthesis index. LiCl enhanced the expression of proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and its downstream enzymes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and Perilipin 2 (PLIN2). The addition of LiCl significantly enhanced p-GSK-3β, β-catenin, p-β-catenin protein expression, hypoxia-inducible factor-1α (HIF-1α), and downregulation factor genes for mRNA expression (P < 0.05). These findings highlight that LiCl can increase the expression of SCD and PSMA5 by activating the transcription of HIF-1α, Wnt/β-catenin, and the SREBP1 signaling pathways to promote the conversion of trans-vaccenic acid (TVA) to the endogenous synthesis of CLA. This data suggests that the exogenous addition of nutrients can increase CLA content in milk through pertinent signaling pathways.
Collapse
Affiliation(s)
- Jiayi Liu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinglin Shen
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinxin Zong
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yating Fan
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Junhao Cui
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Dongqiao Peng
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Proteomics Insights into the Gene Network of cis9, trans11-Conjugated Linoleic Acid Biosynthesis in Bovine Mammary Gland Epithelial Cells. Animals (Basel) 2022; 12:ani12131718. [PMID: 35804617 PMCID: PMC9264836 DOI: 10.3390/ani12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to elucidate the stearoyl-coenzyme A desaturase (SCD1)-dependent gene network of c9, t11-CLA biosynthesis in MAC-T cells from an energy metabolism perspective. The cells were divided into the CAY group (firstly incubated with CAY10566, a chemical inhibitor of SCD1, then incubated with trans-11-octadecenoic acid, (TVA)), the TVA group (only TVA), and the control group (without CAY, TVA). The c9, t11-CLA, and TVA contents were determined by gas chromatography. The mRNA levels of SCD1 and candidate genes were analyzed via real-time PCR. Tandem mass tag (TMT)-based quantitative proteomics, bioinformatic analysis, parallel reaction monitoring (PRM), and small RNA interference were used to explore genes involved in the SCD1-dependent c9, t11-CLA biosynthesis. The results showed that the SCD1 deficiency led by CAY10566 blocked the biosynthesis of c9, t11-CLA. In total, 60 SCD1-related proteins mainly involved in energy metabolism pathways were primarily screened by TMT-based quantitative proteomics analysis. Moreover, 17 proteins were validated using PRM analysis. Then, 11 genes were verified to have negative relationships with SCD1 after the small RNA interference analysis. Based on the above results, we concluded that genes involved in energy metabolism pathways have an impact on the SCD1-dependent molecular mechanism of c9, t11-CLA biosynthesis.
Collapse
|
5
|
Jeon SW, Conejos JRV, Lee JS, Keum SH, Lee HG. D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter
beta-casein, proteins and metabolites linked in milk protein synthesis in bovine
mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:481-499. [PMID: 35709129 PMCID: PMC9184702 DOI: 10.5187/jast.2022.e37] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Seung-Woo Jeon
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Jay Ronel V. Conejos
- Institute of Animal Science, College of
Agriculture and Food Sciences, University of the Philippines Los
Baños, College Batong Malake, Los Baños, Laguna
4031, Philippines
| | - Jae-Sung Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Sang-Hoon Keum
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
- Corresponding author: Hong-Gu Lee, Department of
Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea. Tel: +82-2-450-0410, E-mail:
| |
Collapse
|
6
|
Conejos JRV, Ghassemi Nejad J, Kim JE, Moon JO, Lee JS, Lee HG. Supplementing with L-Tryptophan Increases Medium Protein and Alters Expression of Genes and Proteins Involved in Milk Protein Synthesis and Energy Metabolism in Bovine Mammary Cells. Int J Mol Sci 2021; 22:ijms22052751. [PMID: 33803156 PMCID: PMC7963161 DOI: 10.3390/ijms22052751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to investigate the effects of supplementing with L-tryptophan (L-Trp) on milk protein synthesis using an immortalized bovine mammary epithelial (MAC-T) cell line. Cells were treated with 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM of supplemental L-Trp, and the most efficient time for protein synthesis was determined by measuring cell, medium, and total protein at 0, 24, 48, 72, and 96 h. Time and dose tests showed that the 48 h incubation time and a 0.9 mM dose of L-Trp were the optimal values. The mechanism of milk protein synthesis was elucidated through proteomic analysis to identify the metabolic pathway involved. When L-Trp was supplemented, extracellular protein (medium protein) reached its peak at 48 h, whereas intracellular cell protein reached its peak at 96 h with all L-Trp doses. β-casein mRNA gene expression and genes related to milk protein synthesis, such as mammalian target of rapamycin (mTOR) and ribosomal protein 6 (RPS6) genes, were also stimulated (p < 0.05). Overall, there were 51 upregulated and 59 downregulated proteins, many of which are involved in protein synthesis. The results of protein pathway analysis showed that L-Trp stimulated glycolysis, the pentose phosphate pathway, and ATP synthesis, which are pathways involved in energy metabolism. Together, these results demonstrate that L-Trp supplementation, particularly at 0.9 mM, is an effective stimulus in β-casein synthesis by stimulating genes, proteins, and pathways related to protein and energy metabolism.
Collapse
Affiliation(s)
- Jay Ronel V. Conejos
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Institute of Animal Science, College of Agriculture and Food Sciences, University of the Philippines Los Baños, College Batong Malake, Los Baños, Laguna 4031, Philippines
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jung-Eun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea;
| | - Jae-Sung Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Correspondence: ; Tel.: +82-2-450-0523 or +82-2-457-8567
| |
Collapse
|
7
|
Supplementing conjugated and non-conjugated L-methionine and acetate alters expression patterns of CSN2, proteins and metabolites related to protein synthesis in bovine mammary cells. J DAIRY RES 2021; 87:70-77. [PMID: 32114997 DOI: 10.1017/s0022029919000979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The experiments reported in this research paper aimed to determine the effect of supplementing different forms of L-methionine (L-Met) and acetate on protein synthesis in immortalized bovine mammary epithelial cell line (MAC-T cells). Treatments were Control, L-Met, conjugated L-Met and acetate (CMA), and non-conjugated L-Met and Acetate (NMA). Protein synthesis mechanism was determined by omics method. NMA group had the highest protein content in the media and CSN2 mRNA expression levels (P < 0.05). The number of upregulated and downregulated proteins observed were 39 and 77 in L-Met group, 62 and 80 in CMA group and 50 and 81 in NMA group from 448 proteins, respectively (P < 0.05). L-Met, NMA and CMA treatments stimulated pathways related to protein and energy metabolism (P < 0.05). Metabolomic analysis also revealed that L-Met, CMA and NMA treatments resulted in increases of several metabolites (P < 0.05). In conclusion, NMA treatment increased protein concentration and expression level of CSN2 mRNA in MAC-T cells compared to control as well as L-Met and CMA treatments through increased expression of milk protein synthesis-related genes and production of the proteins and metabolites involved in energy and protein synthesis pathways.
Collapse
|
8
|
Ma H, Ni A, Ge P, Li Y, Shi L, Wang P, Fan J, Isa AM, Sun Y, Chen J. Analysis of Long Non-Coding RNAs and mRNAs Associated with Lactation in the Crop of Pigeons ( Columba livia). Genes (Basel) 2020; 11:genes11020201. [PMID: 32079139 PMCID: PMC7073620 DOI: 10.3390/genes11020201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pigeons have the ability to produce milk and feed their squabs. The genetic mechanisms underlying milk production in the crops of 'lactating' pigeons are not fully understood. In this study, RNA sequencing was employed to profile the transcriptome of lncRNA and mRNA in lactating and non-'lactating' pigeon crops. We identified 7066 known and 17,085 novel lncRNAs. Of these lncRNAs, 6166 were differentially expressed. Among the 15,138 mRNAs detected, 6483 were differentially expressed, including many predominant genes with known functions in the milk production of mammals. A GO annotation analysis revealed that these genes were significantly enriched in 55, 65, and 30 pathways of biological processes, cellular components, and molecular functions, respectively. A KEGG pathway enrichment analysis revealed that 12 pathways (involving 544 genes), including the biosynthesis of amino acids, the propanoate metabolism, the carbon metabolism and the cell cycle, were significantly enriched. The results provide fundamental evidence for the better understanding of lncRNAs' and differentially expressed genes' (DEGs) regulatory role in the molecular pathways governing milk production in pigeon crops. To our knowledge, this is the first genome-wide investigation of the lncRNAs in pigeon crop associated with milk production. This study provided valuable resources for differentially expressed lncRNAs and mRNAs, improving our understanding of the molecular mechanism of pigeon milk production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-6281-6005
| |
Collapse
|
9
|
Wang T, Lee H, Zhen Y. Responses of MAC-T Cells to Inhibited Stearoyl-CoA Desaturase 1 during cis
-9, trans
-11 Conjugated Linoleic Acid Synthesis. Lipids 2018; 53:647-652. [DOI: 10.1002/lipd.12077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University; Xincheng Street no. 2888, Nanguan District; Changchun 130118 Jilin Province People’ Republic of China
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University; Xincheng Street No. 2888, Nanguan District; Changchun 130118 Jilin Province People’ Republic of China
| | - Honggu Lee
- Department of Animal Science and Technology, College of Animal Bioscience and Technology; Konkuk University, 120 Neungdong-ro, Gwangjin-gu; Seoul 143-701 South Korea
| | - Yuguo Zhen
- College of Animal Science and Technology, Jilin Agricultural University; Xincheng Street no. 2888, Nanguan District; Changchun 130118 Jilin Province People’ Republic of China
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University; Xincheng Street No. 2888, Nanguan District; Changchun 130118 Jilin Province People’ Republic of China
- JLAU-Borui Dairy Science and Technology Research & Development Center, Jilin Agricultural University; Xincheng Street no. 2888, Nanguan District; Changchun 130118 Jilin Province People’ Republic of China
| |
Collapse
|