1
|
Al-Hassan JM, Afzal M, Oommen S, Liu YF, Pace-Asciak C. Oxysterols in catfish skin secretions (Arius bilineatus, Val.) exhibit anti-cancer properties. Front Pharmacol 2022; 13:1001067. [PMID: 36313377 PMCID: PMC9614162 DOI: 10.3389/fphar.2022.1001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The edible catfish Arius bilineatus, (Valenciennes) elaborates a proteinaceous gel-like material through its epidermis when threatened or injured. Our on-going studies on this gel have shown it to be a complex mixture of several biologically active molecules. Anti-cancer studies on lipid fractions isolated from the gel-like materials showed them to be active against several cancer cell lines. This prompted us to investigate further the lipid composition of the catfish epidermal gel secretions (EGS). Analysis of the lipid fraction of EGS resulted in identification of 12 oxysterols including cholesterol and 2 deoxygenated steroids i.e., 7α-hydroxy cholesterol, 7β-hydroxycholesterol, 5,6 epoxycholesterol, 3β-hydroxycholest-5-ene-7-one and cholesta-3,5-dien-7-one. Progesterone, cholest-3,5-diene, cholesta-2,4-diene, cholest-3,5,6-triol and 4-cholesten-3-one were found as minor components, and were identified through their MS, 1HNMR and FTIR spectral data and were compared with those of the standards. Cholest-3,6-dione, cholesta-4,6-diene-3-one, cholesta-2,4-diene, and cholesta-5,20(22)-dien-3-ol were found only in trace amounts and were identified by GC/MS/MS spectral data. Since cholesterol is the major component of EGS, the identified oxysterols (OS) are presumably cholesterol oxidation products. Many of the identified OS are known important biological molecules that play vital physiological role in the producer and recipient organisms. We report herein the effects of these sterols on three human cancer cell lines in vitro, i.e., K-562 (CML cell line), MDA MB-231 (estrogen positive breast cancer cell line) and MCF-7 (estrogen negative breast cancer cell line). Interestingly significant (p < 0.05) dose differences were observed between tested OS on cell types used. The presence of these sterols in EGS may help explain some aspects of the physiological activities of fraction B (FB) prepared from EGS, such as enhanced wound and diabetic ulcer healing, anti-inflammatory action and cytotoxic activities reported in our previous studies. The anti-proliferative actions of some of these oxysterols especially the cholesterol 3,5,6-triol (#5) as established on selected cancer cell lines in this study support our previous studies and make them candidates for research for human application.
Collapse
Affiliation(s)
- Jassim M. Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
- *Correspondence: Jassim M. Al-Hassan,
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Sosamma Oommen
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Yuan Fang Liu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Cecil Pace-Asciak
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Vremere A, Merola C, Fanti F, Sergi M, Perugini M, Compagnone D, Mikhail M, Lorenzetti S, Amorena M. Oxysterols profiles in zebrafish (Danio rerio) embryos exposed to bisphenol A. Food Chem Toxicol 2022; 165:113166. [PMID: 35609738 DOI: 10.1016/j.fct.2022.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Oxysterols are cholesterol oxidation products and bioactive lipids involved in developmental signaling pathways, embryonic and postembryonic tissue patterning and homeostasis. The embryonic period is a very sensitive window of exposure to bisphenol A (BPA), hence the role of BPA on the levels of oxysterols in the very early stages of zebrafish embryogenesis is a relevant novel field of investigation. OBJECTIVES To compare the role of BPA on oxysterols levels in zebrafish embryos at 8 and 24 hours post fertilization (hpf) with cytochromes P450 (CYPs)-modulating chemicals (carbamazepine, ketoconazole, and hydrogen peroxide). METHODS Upon a dose range finding, zebrafish embryos were exposed to environmentally relevant (0.04μM) and toxicological (17.5 μM) BPA concentrations. Seven oxysterols were profiled by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS Similarly to the CYPs-modulating chemicals, BPA caused: i) no significant changes at 8 hpf and ii) a dose-dependent increase of total oxysterols at 24 hpf, with 27-hydroxycholesterol as the most regulated oxysterol. DISCUSSION In the first day post-fertilization of the zebrafish embryos, the role of BPA alike a CYPs-modulating chemical was confirmed by the similar oxysterol changes observed with the already known CYPs-modulating chemicals.
Collapse
Affiliation(s)
- Anton Vremere
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy; Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Federico Fanti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Milena Mikhail
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Stefano Lorenzetti
- Dpt. of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - ISS, Rome, Italy.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
3
|
Ribeiro D, Sousa A, Nicola P, Ferreira de Oliveira JMP, Rufino AT, Silva M, Freitas M, Carvalho F, Fernandes E. β-Carotene and its physiological metabolites: Effects on oxidative status regulation and genotoxicity in in vitro models. Food Chem Toxicol 2020; 141:111392. [PMID: 32360219 DOI: 10.1016/j.fct.2020.111392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Carotenoids are ubiquitously distributed in nature, β-carotene being the most frequently found carotenoid in the human diet. In the human body, β-carotene is absorbed, distributed and metabolized by enzymatic and/or non-enzymatic oxidant cleavage into several metabolites. Despite the broadly accepted biological value of β-carotene, it has also been considered a double-edged sword, mainly due to its potential antioxidant versus pro-oxidant behaviour. In this sense, the aim of this work was to scrutinize the antioxidant or pro-oxidant potential of β-carotene and its metabolites, namely trans-β-apo-8'-carotenal and β-ionone. Several parameters were evaluated in this study, viz. their effects on reactive species production, both in human whole blood and neutrophils; their effects on lipid peroxidation, in the absence and presence of peroxynitrite anion (ONOO-) or hydrogen peroxide (H2O2), using a synaptosomal model; and finally, their putative genotoxic effects in the human hepatic HepG2 cell line. In general, depending on the cellular model and conditions tested, β-carotene and its metabolites revealed antioxidant effects to varying degrees without significant pro-oxidant or genotoxic effects.
Collapse
Affiliation(s)
- Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro Nicola
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marta Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry. J Pharm Biomed Anal 2018; 150:396-405. [DOI: 10.1016/j.jpba.2017.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/04/2023]
|
5
|
Panov A, Kubalik N, Brooks BR, Shaw CA. In Vitro Effects of Cholesterol β-d-Glucoside, Cholesterol and Cycad Phytosterol Glucosides on Respiration and Reactive Oxygen Species Generation in Brain Mitochondria. J Membr Biol 2010; 237:71-7. [DOI: 10.1007/s00232-010-9307-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
|
6
|
|
7
|
Bach D, Epand RF, Epand RM, Wachtel E. Interaction of 7-Ketocholesterol with Two Major Components of the Inner Leaflet of the Plasma Membrane: Phosphatidylethanolamine and Phosphatidylserine. Biochemistry 2008; 47:3004-12. [DOI: 10.1021/bi702070b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diana Bach
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada, Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Chemical Research Infrastructure Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Raquel F. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada, Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Chemical Research Infrastructure Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada, Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Chemical Research Infrastructure Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Ellen Wachtel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada, Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Chemical Research Infrastructure Unit, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Peptid-tethered bilayer lipid membranes and their interaction with Amyloid ß-peptide. Biointerphases 2007; 2:151-8. [DOI: 10.1116/1.2804746] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Chang JY, Liu LZ. Peroxisome proliferator-activated receptor agonists prevent 25-OH-cholesterol induced c-jun activation and cell death. BMC Pharmacol 2001; 1:10. [PMID: 11737865 PMCID: PMC60650 DOI: 10.1186/1471-2210-1-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2001] [Accepted: 11/27/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cholesterol oxides, the oxygenated derivatives of cholesterol, have been shown to cause programmed cell death in a variety of cell types. Using N9 microglia, this study was designed to investigate the molecular events induced by cholesterol oxides prior to the execution of programmed cell death. RESULTS Microglia were very sensitive to 25-OH-cholesterol, such that a 2-day treatment of the cells with 5 microM 25-OH-cholesterol reduced cell viability to 5-10% of controls. There was a dose- and time-dependent increase in c-jun and phospho-c-jun levels in microglia prior to this 25-OH-cholesterol induced cell death. In contrast, 7-beta-OH-cholesterol, which was relatively non-toxic to microglia, did not increase phospho-c-jun levels. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that have important roles in atherogenesis. Results from this study indicate that PPAR agonists such as 15d-PGJ2, indomethacin and WY14643 can attenuate cholesterol oxide induced c-jun activation and cell death in microglia. CONCLUSIONS Peroxisome proliferator-activated receptor agonists may be useful in future development of pharmacological agents against cholesterol oxide induced cytotoxicity.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Anatomy & Neurobiology, University of Arkansas for Medical Sciences Little Rock, AR 72205, USA
- Department of Ophthalmology, University of Arkansas for Medical Sciences Little Rock, AR 72205, USA
| | - Ling-Zhi Liu
- Department of Anatomy & Neurobiology, University of Arkansas for Medical Sciences Little Rock, AR 72205, USA
| |
Collapse
|
10
|
Kanski J, Lauderback C, Butterfield DA. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro. Neurochem Res 2001; 26:23-9. [PMID: 11358278 DOI: 10.1023/a:1007620330168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antioxidant properties of 5-aminosalicylic acid in vitro were evaluated in a synaptosomal membrane system prepared from gerbil cortical synaptosomes using EPR spin labeling and spectroscopic techniques. MAL-6 (2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl) and 5-NS (5-nitroxide stearate) spin labels were used to assess changes in protein oxidation and membrane lipid fluidity, respectively. Synaptosomal membranes were subjected to oxidative stress by incubation with 1 mM azo-bis(isobutyronitrile) (AIBN) or 1 mM 2,2'-azobis(amidino propane) dihydrochloride (AAPH) at 37 degrees C for 30 minutes. The EPR analyses of the samples showed significant oxidation of synaptosomal proteins and a decrease in membrane fluidity. 5-Aminosalicylic acid also was evaluated by means of FRAP (the ferric reducing ability of plasma) test as a potential antioxidant. 5-Aminosalicylic acid also showed protection against the oxidation in gerbil cortical synaptosomes system caused by AIBN and AAPH. These results are consistent with the notion of antioxidant protection against free radical induced oxidative stress in synaptosomal membrane system by this agent.
Collapse
Affiliation(s)
- J Kanski
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington 04506, USA
| | | | | |
Collapse
|
11
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
12
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Shi H, Noguchi N, Xu Y, Niki E. Formation of phospholipid hydroperoxides and its inhibition by alpha-tocopherol in rat brain synaptosomes induced by peroxynitrite. Biochem Biophys Res Commun 1999; 257:651-6. [PMID: 10208838 DOI: 10.1006/bbrc.1999.0434] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxynitrite resulted from the reaction of nitric oxide and superoxide anion has been implicated in the genesis of neurotoxicity. In this study, the oxidation of phospholipids in rat brain synaptosomes induced by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1) was studied in vitro. The formation and accumulation of phospholipid hydroperoxides, including phosphatidylcholine hydroperoxide (PCOOH) and phosphatidyl-ethanolamine hydroperoxide (PEOOH) in rat brain synaptosomes induced by peroxynitrite, were observed. PEOOH and PCOOH were formed rapidly and SIN-1 concentration-dependently. The hydroperoxides formed in synaptosomes were unstable and it was suggested that phospholipase A2 played a role in degradation of the hydroperoxides. The endogenous alpha-tocopherol acted as a potent antioxidant. It was oxidized very rapidly and concentration-dependently by SIN-1 to alpha-tocopheryl quinone. Furthermore, uric acid was found to be an effective antioxidant in inhibiting oxidative damage to synaptosomal lipids induced by SIN-1. The results provide direct evidence to show that peroxynitrite can not only deplete alpha-tocopherol, but also cause production of phospholipid hydroperoxides resulting in disrupted brain tissue.
Collapse
Affiliation(s)
- H Shi
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 4-6-1 Komaba, 153-8904, Japan
| | | | | | | |
Collapse
|
14
|
Hossain MS, Hashimoto M, Gamoh S, Masumura S. Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J Neurochem 1999; 72:1133-8. [PMID: 10037485 DOI: 10.1046/j.1471-4159.1999.0721133.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Female Wistar rats (100 weeks old) were divided into two groups; one group was fed a high-cholesterol diet (HC) and the other a high-cholesterol diet plus docosahexaenoic acid (HC-fed DHA rats). Fatty acid concentrations in brain tissues were analyzed by gas chromatography. In the HC-fed DHA rats, brain catalase (CAT), GSH, and glutathione peroxidase (GPx) increased in the cerebrum but not in the brainstem or cerebellum. The rate of increase was 23.0% for CAT, 24.5% for GSH, and 26.3% for GPx compared with that in the HC animals (p < 0.05). In the cerebrum of the HC-fed DHA rats, CAT and GPx increased, with an increase in the ratio of DHA to arachidonic acid. The cerebrum, unlike the other areas of the brain, seems to be more sensitive to DHA in stimulating CAT and GPx. We suggest that DHA plays an important role in inducing an antioxidative defense against active oxygen by enhancing the cerebral activities of CAT, GPx, and GSH.
Collapse
Affiliation(s)
- M S Hossain
- Department of Physiology, Shimane Medical University, Izumo, Japan
| | | | | | | |
Collapse
|
15
|
Chang JY, Chavis JA, Liu LZ, Drew PD. Cholesterol oxides induce programmed cell death in microglial cells. Biochem Biophys Res Commun 1998; 249:817-21. [PMID: 9731219 DOI: 10.1006/bbrc.1998.9237] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N9 microglial cells were used as a model to examine the effect of cholesterol oxides on central nervous system microglia. Results indicated that 25-OH-cholesterol was the most cytotoxic agent among the cholesterol oxides tested. During the process of cell death, this agent caused prominent nuclei condensation and significant DNA fragmentation, a phenomenon association with programmed cell death. Cholesterol oxides were able to potentiate the bacterial lipopolysaccharide (LPS)-induced nitric oxide production to various degrees. Consistent with this finding, Northern blot analysis indicated that 25-OH-cholesterol potentiated the LPS-induced nitric oxide synthase RNA levels. The cytotoxicity of 25-OH-cholesterol could be prevented by methyl-beta-cyclodextrin, a glucose polymer known to cause cholesterol oxide efflux from cells. While much attention has been focused on the cytotoxicity of cholesterol oxides on immune cells within the blood, including lymphocytes and macrophages, the results from this study indicated for the first time that these agents are toxic to microglial cells derived from the central nervous system.
Collapse
Affiliation(s)
- J Y Chang
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Cultured rat cerebellar granule cells were used to determine the potential neurotoxicity of cholesterol oxides. The cholesterol oxides tested included: 7-beta-OH-, 7-keto-, 19-OH-, 22(R)-OH-, 22(S)-OH- and 25-OH- cholesterol. Among them, 7-beta-OH- and 7-keto-cholesterol were the most efficacious in causing neuronal death such that 20 microg/ml (50 microM) of these agents killed more than 80% of cells in 2 days. 7-beta-OH-cholesterol at this concentration killed 50% of cells in approximately 7 h. A number of pharmacological agents were tested for their abilities to prevent neuronal death induced by cholesterol oxides. Among them, aurintricarboxylic acid, vitamin E and methyl-beta-cyclodextrin were able to prevent cholesterol oxide-induced neurotoxicity in a dose-dependent manner. These results suggest that, in addition to causing pathological changes in cells directly involved in atherosclerosis, cholesterol oxides may induce toxicity in neurons of the central nervous system.
Collapse
Affiliation(s)
- J Y Chang
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|