1
|
Guo Y, Wang N, Wang D, Luo S, Zhang H, Yu D, Wang L, Elfalleh W, Liao C. Preparation of vacuum-assisted conjugated linoleic acid phospholipids under nitrogen: Mechanism of acyl migration of lysophospholipids. Food Chem 2024; 436:137680. [PMID: 37832416 DOI: 10.1016/j.foodchem.2023.137680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Sn-Glycerol-3-phosphatidylcholine (GPC) was prepared by hydrolysis of phosphatidylcholine (PC) catalyzed by phospholipase A1 (PLA1). Nitrogen flow assisted the esterification of conjugated linoleic acid (CLA) and GPC to produce conjugated linoleic acid lysophosphatidylcholine (LPC - CLA). The effects of different reaction conditions on the PC conversion and acyl migration rates were investigated, and the acyl migration mechanism under acidic and alkaline conditions was studied. In addition, the optimum conditions for the esterification of CLA and GPC were selected. The optimal condition for the hydrolysis of PC was an enzyme loading of 5 %, pH of 5, reaction temperature of 50 ℃, and reaction time of 3 h. The results also showed that the maximum esterification rate reached 82.37 % at an enzyme loading of 15 %, CLA/GPC molar ratio of 50:1, and vacuum pressure of 13.3 kPa. This study not only improved the bioavailability of PC but also effectively increased the content of LPC - CLA.
Collapse
Affiliation(s)
- Yanfei Guo
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Donghua Wang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shunian Luo
- School of Food Science, Harbin University of Commerce, Harbin, 150000, China
| | - Hongwei Zhang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liqi Wang
- School of Food Science, Harbin University of Commerce, Harbin, 150000, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Zrig, 6072, Gabes, Tunisia
| | - Changbao Liao
- Heilongjiang Red Star Group Food Co., LTD, Mudanjiang, 157000, China
| |
Collapse
|
2
|
Ahmmed MK, Hachem M, Ahmmed F, Rashidinejad A, Oz F, Bekhit AA, Carne A, Bekhit AEDA. Marine Fish-Derived Lysophosphatidylcholine: Properties, Extraction, Quantification, and Brain Health Application. Molecules 2023; 28:molecules28073088. [PMID: 37049852 PMCID: PMC10095705 DOI: 10.3390/molecules28073088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer’s. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Ataturk University, Yakutiye 25030, Turkey
| | - Adnan A. Bekhit
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir 32038, Bahrain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-3-479-4994
| |
Collapse
|
3
|
Enzymatic synthesis of mono- and disubstituted phospholipids by direct condensation of oleic acid and glycerophosphocholine with immobilized lipases and phospholipase. Food Chem 2022; 401:134109. [PMID: 36115228 DOI: 10.1016/j.foodchem.2022.134109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Lysophospholipids which contain polyunsaturated fatty acids play a key role in food and cosmetic industries because of their bioactivity. Therefore, the formation of mono- and disubstituted phospholipids is quite interesting as they could be used for the formation of different natural liposomes. Using immobilized derivatives of lipases and phospholipases, the esterification of oleic acid with glycerophosphocholine (GPC) has been studied. Thus, derivatives were quite active in completely anhydrous media and in solvent-free reaction systems where the reaction takes place. CALB biocatalyst was able to successfully form oleoyl-LPC at 60 °C in the presence of 30 % butanone, where the synthesis rate was 100 times higher than in the absence of solvents at 40 °C. On the other hand, the best synthesis rate for dioleoyl-PC was achieved with immobilized Lecitase in a solvent-free process at 60 °C, an 83 % synthesis yield was achieved with an initial synthesis rate of 4.32 mg/mL × h × g.
Collapse
|
4
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
5
|
Bogojevic O, Leung AE. Enzyme-Assisted Synthesis of High-Purity, Chain-Deuterated 1-Palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine. ACS OMEGA 2020; 5:22395-22401. [PMID: 32923797 PMCID: PMC7482301 DOI: 10.1021/acsomega.0c02823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
1-Palmitoyl-d 31-2-oleoyl-d 32-sn-glycero-3-phosphocholine (POPC-d 63) with the palmitoyl and oleoyl chains deuterium-labeled was produced in three steps from 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, deuterated palmitic acid, and deuterated oleic anhydride. Esterification at the sn-2 position was achieved under standard chemical conditions, using DMAP to catalyze the reaction between the 2-lysolipid and oleic anhydride-d 64. Complete regioselective sn-1 acyl substitution was achieved in two steps using operationally simple, enzyme-catalyzed regioselective hydrolysis and esterification to substitute the sn-1 chain for a perdeuterated analogue. This method provides chain-deuterated POPC with high chemical purity (>96%) and complete regiopurity, useful for a variety of experimental techniques. This chemoenzymatic semisynthetic approach is a general, modular method of producing highly pure, mixed-acyl phospholipids, where the advantages of both chemical synthesis (efficiency, high yields) and biocatalytic synthesis (specificity, nontoxicity) are realized.
Collapse
|
6
|
Lipase Catalyzed Acidolysis for Efficient Synthesis of Phospholipids Enriched with Isomerically Pure cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid. Catalysts 2019. [DOI: 10.3390/catal9121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The production of phospholipid (PL) conjugates with biologically active compounds is nowadays an extensively employed approach. This type of phospholipids conjugates could improve bioavailability of many poorly absorbed active compounds such as isomers of conjugated linoleic acid (CLA), which exhibit versatile biological effects. The studies were carried out to elaborate an efficient enzymatic method for the synthesis of phospholipids with pure (>90%) cis-9,trans-11 and trans-10,cis-12 CLA isomers. For this purpose, three commercially available immobilized lipases were examined in respect to specificity towards CLA isomers in acidolysis of egg-yolk phosphatidylcholine (PC). Different incorporation rates were observed for the individual CLA isomers. Under optimal conditions: PC/CLA molar ratio 1:6; Rhizomucor miehei lipase loading 24% wt. based on substrates; heptane; DMF, 5% (v/v); water activity (aw), 0.11; 45 °C; magnetic stirring, 300 rpm; 48 h., effective incorporation (EINC) of CLA isomers into PC reached ca. 50%. The EINC of CLA isomers was elevated for 25–30% only by adding a water mimic (DMF) and reducing aw to 0.11 comparing to the reaction system performed at aw = 0.23. The developed method of phosphatidylcholine acidolysis is the first described in the literature dealing with isometrically pure CLA and allow to obtain very high effective incorporation.
Collapse
|
7
|
Ang X, Chen H, Xiang JQ, Wei F, Quek SY. Preparation and functionality of lipase-catalysed structured phospholipid – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Chávez-Zamudio R, Ochoa-Flores AA, Soto-Rodríguez I, Garcia-Varela R, García HS. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food Funct 2018; 8:3346-3354. [PMID: 28856361 DOI: 10.1039/c7fo00933j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, Cmax of 610 ± 65.0 μg mL-1 and Tmax of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.
Collapse
Affiliation(s)
- Rubi Chávez-Zamudio
- UNIDA, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| | | | | | | | | |
Collapse
|
9
|
Mnasri T, Ergan F, Herault J, Pencreac'h G. Lipase-catalyzed Synthesis of Oleoyl-lysophosphatidylcholine by Direct Esterification in Solvent-free Medium without Water Removal. J Oleo Sci 2017; 66:1009-1016. [PMID: 28794312 DOI: 10.5650/jos.ess17046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis of oleoyl-lysophosphatidylcholine by lipase-catalyzed esterification of glycerophosphocholine (GPC) and free oleic acid in a reaction medium without solvent is presented. The complete solubilisation of GPC, which is a crucial issue in non-polar liquids such as melted free fatty acids, was reached by heating the GPC/oleic acid mixture at high temperature during a short time. The immobilized lipase from Rhizomucor miehei (Lipozyme RM-IM) was shown to catalyze the reaction more efficiently than the immobilized lipases from Thermomyces lanuginosus (Lipozyme TL-IM) and Candida antarctica (Novozym 435). The condition reactions leading to the highest yield were as follows: substrate ratio: 1/20 (GPC/oleic acid); amount of catalyst: 10% (w/w of substrates); temperature: 50°C. Under these conditions, a yield of 75% of oleoyl-lysophosphatidylcholine was achieved in 24 h under stirring and almost no dioleoyl-lysophosphatidylcholine was produced. Unlike other studies dealing with the esterification of GPC with free fatty acids, the removal of the water produced while the reaction proceeds was not necessary to reach high yields.
Collapse
Affiliation(s)
- Taha Mnasri
- Laboratoire Mer, Molécules, Santé (EA 2160), IUT de Laval, Université du Maine
| | - Françoise Ergan
- Laboratoire Mer, Molécules, Santé (EA 2160), IUT de Laval, Université du Maine
| | - Josiane Herault
- Laboratoire Mer, Molécules, Santé (EA 2160), IUT de Laval, Université du Maine
| | - Gaëlle Pencreac'h
- Laboratoire Mer, Molécules, Santé (EA 2160), IUT de Laval, Université du Maine
| |
Collapse
|
10
|
Chen W, Guo W, Gao F, Chen L, Chen S, Li D. Phospholipase A1-Catalysed Synthesis of Docosahexaenoic Acid-Enriched Phosphatidylcholine in Reverse Micelles System. Appl Biochem Biotechnol 2017; 182:1037-1052. [DOI: 10.1007/s12010-016-2379-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022]
|
11
|
Yang G, Yang R, Hu J. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis. J Oleo Sci 2015; 64:443-7. [PMID: 25766935 DOI: 10.5650/jos.ess14246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is amphiphilic substance, and possesses excellent physiological functions. In this study, LPC was prepared through ethanolysis of phosphatidylcholine (PC) in n-hexane or solvent free media catalyzed by Novozym 435 (from Candida antarctica), Lipozyme TLIM (from Thermomcyces lanuginosus) and Lipozyme RMIM (from Rhizomucor miehei). The results showed that three immobilized lipases from Candida Antarctica, Thermomcyces lanuginosus and Rhizomucor miehei could catalyze ethanolysis of PC efficiently. In n-hexane, the LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TLIM and Lipozyme RMIM could reach to 98.5 ± 1.6%, 94.6 ± 1.4% and 93.7 ± 1.8%, respectively. In solvent free media, the highest LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TL IM and Lipozyme RM IM were 97.7 ± 1.7%, 93.5 ± 1.2% and 93.8 ± 1.9%, respectively. The catalytic efficiencies of the three lipases were in the order of Novozyme 435 > Lipozyme TLIM > Lipozyme RMIM. Furthermore, their catalytic efficiencies in n-hexane were better than those in solvent free media.
Collapse
Affiliation(s)
- Guolong Yang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology
| | | | | |
Collapse
|
12
|
Lim CW, Kim BH, Kim IH, Lee MW. Modeling and optimization of phospholipase A₁-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production. Biotechnol Prog 2015; 31:35-41. [PMID: 25380220 DOI: 10.1002/btpr.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/23/2014] [Indexed: 11/11/2022]
Abstract
Modeling the phospholipase A1 (PLA1 )-catalyzed partial hydrolysis of soy phosphatidylcholine (PC) in hexane for the production of lysophosphatidylcholine (LPC) and optimizing the reaction conditions using response surface methodology were described. The reaction was performed with 4 g of PC in a stirred batch reactor using a commercial PLA1 (Lecitase Ultra) as the biocatalyst. The effects of temperature, reaction time, water content, and enzyme loading on LPC and glycerylphosphorylcholine (GPC) content in the reaction products were elucidated using the models established. Optimal reaction conditions for maximizing the LPC content while suppressing acyl migration, which causes GPC formation, were as follows: temperature, 60°C; reaction time, 3 h; water content, 10% of PC; and enzyme loading, 1% of PC. When the reaction was conducted with 40 g of PC under these conditions, the reaction products contained 83.7 mol % LPC and were free of GPC. LPC had a higher total unsaturated fatty acid content than original PC had and was mainly composed of linoleic acid (78.0 mol % of the total fatty acids).
Collapse
Affiliation(s)
- Chang Wan Lim
- Dept. of Food Science and Technology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Zhao T, No DS, Kim BH, Garcia HS, Kim Y, Kim IH. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Food Chem 2014; 157:132-40. [PMID: 24679762 DOI: 10.1016/j.foodchem.2014.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/24/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
n-3 Polyunsaturated fatty acids (n-3 PUFA)-enriched phosphatidylcholine (PC) was successfully produced with fatty acid from fish oil and PC from soybean by immobilized phospholipase A1-catalyzed acidolysis. Detailed studies of immobilization were carried out, and Lewatit VP OC 1600 was selected as a carrier for preparation of immobilized phospholipase A1, which was used for modification of PC by acidolysis. For acidolysis of PC with n-3 PUFA, the effects of several parameters, namely, water content, temperature, and enzyme loading on the reaction time course were investigated to determine optimum conditions. The optimum water content, temperature, and enzyme loading were 1.0%, 55 °C, and 20%, respectively. The highest incorporation (57.4 mol%) of n-3 PUFA into PC was obtained at 24h and the yield of PC was 16.7 mol%. The yield of PC increased significantly by application of vacuum, even though a slight decrease of n-3 PUFA incorporation was observed.
Collapse
Affiliation(s)
- TingTing Zhao
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea
| | - Da Som No
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea
| | - Byung Hee Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Hugo S Garcia
- UNIDA, Instituto Tecnológico de Veracruz, Veracruz, Ver. 91897, Mexico
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-749, Republic of Korea
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea.
| |
Collapse
|
14
|
Hong SI, Kim Y, Kim CT, Kim IH. Enzymatic synthesis of lysophosphatidylcholine containing CLA from sn-glycero-3-phosphatidylcholine (GPC) under vacuum. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
|
16
|
Mukherjee K, Weber N. Lipid Biotechnology. FOOD SCIENCE AND TECHNOLOGY 2008. [DOI: 10.1201/9781420046649.pt5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Blasi F, Cossignani L, Simonetti M, Brutti M, Ventura F, Damiani P. Enzymatic deacylation of l,2-diacyl-sn-glycero-3-phosphocholines to sn-glycerol-3-phosphocholine. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 2005; 23:203-59. [PMID: 15763405 DOI: 10.1016/j.biotechadv.2005.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 02/05/2005] [Indexed: 11/26/2022]
Abstract
Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification of phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel phospholipids, and brief introduction of the efforts focusing on de novo syntheses of phospholipids. Special attention is given to the summary of molecular structural characteristics and catalytic properties of multiple phospholipases, which helps to interpret experimental phenomena and to improve reaction design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids.
Collapse
Affiliation(s)
- Zheng Guo
- Food Biotechnology and Engineering Group, BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
19
|
A simple HPLC method for the simultaneous analysis of phosphatidylcholine and its partial hydrolysis products 1- and 2-acyl lysophosphatidylcholine. J AM OIL CHEM SOC 2001. [DOI: 10.1007/s11746-001-0379-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|