1
|
Muszyński S, Dajnowska A, Arciszewski MB, Rudyk H, Śliwa J, Krakowiak D, Piech M, Nowakowicz-Dębek B, Czech A. Effect of Fermented Rapeseed Meal in Feeds for Growing Piglets on Bone Morphological Traits, Mechanical Properties, and Bone Metabolism. Animals (Basel) 2023; 13:ani13061080. [PMID: 36978621 PMCID: PMC10044281 DOI: 10.3390/ani13061080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Quality feed is essential for correct bone development and proper functioning of animals. Post-weaned piglets experience a radical change in eating behaviour that can influence their feed intake. For this reason, functional feed additives and ingredients that can be used in post-weaning feeds are needed. The objective of this study was to evaluate the effects of partially replacing wheat with rapeseed meal fermented using Bacillus subtilis strain 87Y on overall bone quality and bone metabolism in weaner piglets. From the 28th day of life, barrows were fed either a standard wheat-based diet or a diet containing 8% fermented rapeseed meal (FRSM) with or without a feed additive containing enzymes, antioxidants, probiotics, and prebiotics. The experimental period lasted 60 days, after which femur quality indices were assessed. Differences in bone length and weight were observed, but there were no changes in bone mineralization or bone mid-diaphysis morphometrical traits between treatments. FRSM inclusion reduced bone mid-diaphysis biomechanical properties, but these changes were dependent on feed-additive supplementation. Analysis of the levels of serum bone turnover markers suggests the intensification of bone resorption in FRSM-fed groups as deoxypyridinoline levels increase. The results obtained warrant further research on what the disturbances in bone mechanical properties and metabolism observed in FRSM-fed weaners means for the subsequent fattening period.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Aleksandra Dajnowska
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland (M.B.A.)
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland (M.B.A.)
| | - Halyna Rudyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Jadwiga Śliwa
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland (M.B.A.)
| | - Dominika Krakowiak
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Piech
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland (M.B.A.)
| | - Bożena Nowakowicz-Dębek
- Department of Animal Hygiene and Environmental Hazards, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Czech
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
2
|
Vahedifar A, Wu J. Extraction, nutrition, functionality and commercial applications of canola proteins as an underutilized plant protein source for human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:17-69. [PMID: 35940704 DOI: 10.1016/bs.afnr.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concerns about sustainability and nutrition security have encouraged the food sector to replace animal proteins in food formulations with underutilized plant protein sources and their co-products. In this scenario, canola protein-rich materials produced after oil extraction, including canola cold-pressed cakes and meals, offer an excellent opportunity, considering their nutritional advantages such as a well-balanced amino acid composition and their potential bioactivity. However, radical differences among major proteins (i.e., cruciferin and napin) in terms of the physicochemical properties, and the presence of a wide array of antinutritional factors in canola, impede the production of a highly pure protein extract with a reasonable extraction yield. In this manuscript, principles regarding the extraction methods applicable for the production of canola protein concentrates and isolates are explored in detail. Alkaline and salt extraction methods are presented as the primary isolation methods, which result in cruciferin-rich and napin-rich isolates with different nutritional and functional properties. Since a harsh alkaline condition would result in an inferior functionality in protein isolates, strategies are recommended to reduce the required solvent alkalinity, including using a combination of salt and alkaline and employing membrane technologies, application of proteases and carbohydrases to facilitate the protein solubilization from biomass, and novel green physical methods, such as ultrasound and microwave treatments. In terms of the commercialization progress, several canola protein products have received a GRAS notification so far, which facilitates their incorporation in food formulations, such as bakery, beverages, salad dressings, meat products and meat analogues, and dairies.
Collapse
Affiliation(s)
- Amir Vahedifar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Czech A, Grela ER, Kiesz M. Dietary fermented rapeseed or/and soybean meal additives on performance and intestinal health of piglets. Sci Rep 2021; 11:16952. [PMID: 34417512 PMCID: PMC8379173 DOI: 10.1038/s41598-021-96117-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to assess the effect of fermented dried soybean (FSBM) and/or fermented rapeseed meal (FRSM) in diets for weaned piglets on production results, nutrient digestibility, gastrointestinal tract histology, and the composition of the gut microbiota. Piglets in the control group received standard diets with soybean meal. Animals in all experimental groups received diets in which a portion of the soybean meal was replaced: in group FR-8% FRSM; in group FR/FS-6% FRSM and 2% FSBM; in group FS/FR-2% FRSM and 6% FSBM and in group FS-8% FSBM. The use of 8% FRSM or 6% FRSM and 2% FSBM in the piglet diets had a positive effect on average daily gains. Piglets from the FR and FR/FS groups had the highest feed conversion rate. Group FS/FR and FS piglets had significantly lower mortality and lower incidence of diarrhoea. Piglets fed a diet with the fermented components, in particular with 8% FRSM or 6% FRSM and 2% FSBM, exhibited a positive effect on the microbiological composition and histology of intestines, which resulted in improved nutrient digestibility coefficients (ATTD and AID).
Collapse
Affiliation(s)
- Anna Czech
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Eugeniusz Ryszard Grela
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Martyna Kiesz
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
4
|
Moreno-González M, Chuekitkumchorn P, Silva M, Groenewoud R, Ottens M. High throughput process development for the purification of rapeseed proteins napin and cruciferin by ion exchange chromatography. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Baker PW, Charlton A. A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes-a review. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Tomaszewska E, Muszyński S, Dobrowolski P, Kamiński D, Czech A, Grela E, Wiącek D, Tomczyk-Warunek A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9182-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Meng Z, Wei S, Qi K, Guo Y, Wang Y, Liu Y. Secondary structure of proteins on oil release in aqueous enzymatic extraction of rapeseed oil as affected hydrolysis state. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1414837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zong Meng
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Songli Wei
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Keyu Qi
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Ying Guo
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Yong Wang
- Department of Food Science and Engineering, Guangdong Saskatchewan Oilseed Joint Laboratory, Jinan University, Guangdong, People’s Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
9
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
10
|
Liu JJ, Gasmalla MAA, Li P, Yang R. Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sari YW, Mulder WJ, Sanders JPM, Bruins ME. Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 2015; 10:1138-57. [PMID: 26132986 DOI: 10.1002/biot.201400569] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/09/2015] [Accepted: 05/19/2015] [Indexed: 11/09/2022]
Abstract
The globally increasing protein demands require additional resources to those currently available. Furthermore, the optimal usage of protein fractions from both traditional and new protein resources, such as algae and leaves, is essential. Here, we present an overview on alkaline plant protein extraction including the potentials of enzyme addition in the form of proteases and/or carbohydrolases. Strategic biomass selection, combined with the appropriate process conditions can increase protein yields after extraction. Enzyme addition, especially of proteases, can be useful when alkaline protein extraction yields are low. These additions can also be used to enable processing at a pH closer to 7 to avoid the otherwise severe conditions that denature proteins. Finally, a protein biorefinery concept is presented that aims to upcycle residual biomass by separating essential amino acids to be used for food and feed, and non-essential amino acids for production of bulk chemicals.
Collapse
Affiliation(s)
- Yessie W Sari
- Biobased Chemistry and Technology, Wageningen University, Wageningen, the Netherlands.,Biophysics Division, Department of Physics, Bogor Agricultural University, Bogor, Indonesia
| | | | - Johan P M Sanders
- Biobased Chemistry and Technology, Wageningen University, Wageningen, the Netherlands.,Food and Biobased Research, Wageningen UR, Wageningen, the Netherlands
| | - Marieke E Bruins
- Biobased Chemistry and Technology, Wageningen University, Wageningen, the Netherlands. .,Food and Biobased Research, Wageningen UR, Wageningen, the Netherlands.
| |
Collapse
|
12
|
|
13
|
Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:41-47. [PMID: 24354334 DOI: 10.1021/la4034782] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This Article reports on the influence of light irradiation on the stability of emulsions prepared using a photoresponsive gemini surfactant (C7-azo-C7) having an azobenzene skeleton as a spacer. When mixtures of trans C7-azo-C7 aqueous solution and n-octane are homogenized, stable emulsions are obtained in a specific region of weight fraction and surfactant concentration. Fluorescence microscopy observations using a small amount of fluorescent probes show that the stable emulsions are oil-in-water (O/W)-type. UV irradiation of stable O/W emulsions promotes the cis isomerization of trans C7-azo-C7 and leads to the coalescence of the oil (octane) droplets in the emulsions, that is, demulsification. While the equilibrated interfacial tension (IFT) between aqueous trans C7-azo-C7 solution and octane is almost the same as that between aqueous cis C7-azo-C7 and octane, the occupied area per molecule for C7-azo-C7 at octane/water interface decreases with the cis photoisomerization of trans isomer. Dynamic IFT measurement shows that UV irradiation to the interface between aqueous trans C7-azo-C7 solution and octane brings about an increase in the interfacial tension, indicating that the Gibbs free energy at the interface increases. From these results, the cis isomerization of trans C7-azo-C7 molecules at the O/W interface due to UV irradiation leads to direct contact between the water and octane phases, because of the reduction of molecular area at the interface, and subsequently makes the emulsions demulsified.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | | | | | | | | |
Collapse
|
14
|
Enzymatic Demulsification of the Oil-Rich Emulsion Obtained by Aqueous Extraction of Peanut Seeds. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2265-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
|
16
|
Tabtabaei S, Diosady LL. The Isolation of Yellow Mustard Oil Using Water and Cyclic Ethers. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1971-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Pownall TL, Udenigwe CC, Aluko RE. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4712-8. [PMID: 20359226 DOI: 10.1021/jf904456r] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The amino acid composition and antioxidant activities of peptide fractions obtained from HPLC separation of a pea protein hydrolysate (PPH) were studied. Thermolysin hydrolysis of pea protein isolate and ultrafiltration (3 kDa molecular weight cutoff membrane) yielded a PPH that was separated into five fractions (F1-F5) on a C(18) reverse phase HPLC column. The fractions that eluted later from the column (F3-F5) contained higher contents hydrophobic and aromatic amino acids when compared to fractions that eluted early or the original PPH. Fractions F3-F5 also exhibited the strongest radical scavenging and metal chelating activities; however, hydrophobic character did not seem to contribute to reducing power of the peptides. In comparison to glutathione, the peptide fractions had significantly higher (p < 0.05) ability to inhibit linoleic acid oxidation and chelate metals. In contrast, glutathione had significantly higher (p < 0.05) free radical scavenging properties than the peptide fractions.
Collapse
Affiliation(s)
- Trisha L Pownall
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | | | | |
Collapse
|
18
|
Zhang SB, Wang Z, Xu SY, Gao XF. Purification and Characterization of a Radical Scavenging Peptide from Rapeseed Protein Hydrolysates. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1404-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
|
20
|
A Process for the Aqueous Enzymatic Extraction of Corn Oil from Dry Milled Corn Germ and Enzymatic Wet Milled Corn Germ (E-Germ). J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1363-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhang SB, Wang Z, Xu SY. Antioxidant and Antithrombotic Activities of Rapeseed Peptides. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1217-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|