1
|
Lopes PA, Alfaia CM, Pestana JM, Prates JAM. Structured Lipids Engineering for Health: Novel Formulations Enriched in n-3 Long-Chain Polyunsaturated Fatty Acids with Potential Nutritional Benefits. Metabolites 2023; 13:1060. [PMID: 37887385 PMCID: PMC10608893 DOI: 10.3390/metabo13101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Structured lipids (SLs) offer a promising avenue for designing novel formulations enriched in n-3 long-chain polyunsaturated fatty acids (LCPUFAs) with potential health benefits. Triacylglycerols (TAGs), the most common fats in the human diet, are both non-toxic and chemically stable. The metabolic efficiency and digestibility of TAGs are significantly influenced by the position of fatty acids (FAs) within the glycerol backbone, with FAs at the sn-2 position being readily absorbed. Over the past two decades, advancements in SL research have led to the development of modified TAGs, achieved either through chemical or enzymatic processes, resulting in SLs. The ideal structure of SLs involves medium-chain FAs at the sn-1,3 positions and long-chain n-3 LCPUFAs at the sn-2 position of the glycerol backbone, conferring specific physicochemical and nutritional attributes. These tailored SL formulations find wide-ranging applications in the food and nutraceutical industries, showing promise for dietary support in promoting health and mitigating various diseases. In particular, SLs can be harnessed as functional oils to augment TAG metabolism, thereby impeding the development of fatty liver, countering the onset of obesity, and preventing atherosclerosis and age-related chronic diseases. In scrutinising prevailing research trajectories, this review endeavours to provide an in-depth analysis of the multifaceted advantages and repercussions associated with the synthesis of SLs. It elucidates their burgeoning potential in enhancing health and well-being across a range of demographic cohorts. Specifically, the implications of SL utilisation are discussed in the context of healthcare environments and early childhood developmental support.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Remonatto D, Santaella N, Lerin LA, Bassan JC, Cerri MO, de Paula AV. Solvent-Free Enzymatic Synthesis of Dietary Triacylglycerols from Cottonseed Oil in a Fluidized Bed Reactor. Molecules 2023; 28:5384. [PMID: 37513254 PMCID: PMC10384263 DOI: 10.3390/molecules28145384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of structured lipids with nutraceutical applications, such as medium-long-medium (MLM) triacylglycerols, via modification of oils and fats represents a challenge for the food industry. This study aimed to synthesize MLM-type dietary triacylglycerols by enzymatic acidolysis of cottonseed oil and capric acid (C10) catalyzed by Lipozyme RM IM (lipase from Rhizomucor miehei) in a fluidized bed reactor (FBR). After chemical characterization of the feedstock and hydrodynamic characterization of the reactor, a 22 central composite rotatable design was used to optimize capric acid incorporation. The independent variables were cycle number (20-70) and cottonseed oil/capric acid molar ratio (1:2-1:4). The temperature was set at 45 °C. The best conditions, namely a 1:4 oil/acid molar ratio and 80 cycles (17.34 h), provided a degree of incorporation of about 40 mol%, as shown by compositional analysis of the modified oil. Lipozyme RM IM showed good operational stability (kd = 2.72 × 10-4 h-1, t1/2 = 2545.78 h), confirming the good reuse capacity of the enzyme in the acidolysis of cottonseed oil with capric acid. It is concluded that an FBR configuration is a promising alternative for the enzymatic synthesis of MLM triacylglycerols.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Núbia Santaella
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Lindomar Alberto Lerin
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara (UNIFE), Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Juliana Cristina Bassan
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
- State Center for Technological Education Paula Souza, Faculty of Technology of Barretos (FATEC), Barretos 14780-060, SP, Brazil
| | - Marcel Otávio Cerri
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
3
|
Kim J, Chung MY, Choi HD, Choi IW, Kim BH. Enzymatic Synthesis of Structured Monogalactosyldiacylglycerols Enriched in Pinolenic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8079-8085. [PMID: 29998729 DOI: 10.1021/acs.jafc.8b02599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We enzymatically prepared structured monogalactosydiacylglycerols (MGDGs) enriched in pinolenic acid (PLA). PLA-enriched free fatty acids (FFAs) containing ∼86 mol % PLA were produced from an FFA fraction obtained from pine nut oil (PLA content, ∼13 mol %) by urea crystallization. Commercial MGDGs (5 mg) were acidolyzed with PLA-enriched FFAs using four commercial immobilized lipases as biocatalysts. The reaction was performed in acetone (4 mL) in a stirred-batch reactor. Lipozyme RM IM (immobilized Rhizomucor miehei lipase) was the most effective biocatalyst for the reaction. Structured MGDGs containing 42.1 mol % PLA were obtained under optimal reaction conditions: temperature, 25 °C; substrate molar ratio, 1:30 (MGDGs/PLA-enriched FFAs); enzyme loading, 20 wt % of total substrates; and reaction time, 36 h. The structured MGDGs were separated from the reaction products at a purity of 96.6 wt % using silica column chromatography. The structured MGDGs could be possibly used as emulsifiers with appetite-suppression effects.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Food Science and Technology , Chung-Ang University , Anseong 17546 , Korea
| | - Min-Yu Chung
- Korea Food Research Institute , Jeonbuk 55365 , Korea
| | - Hee-Don Choi
- Korea Food Research Institute , Jeonbuk 55365 , Korea
| | - In-Wook Choi
- Korea Food Research Institute , Jeonbuk 55365 , Korea
| | - Byung Hee Kim
- Department of Food and Nutrition , Sookmyung Women's University , Seoul 04310 , Korea
| |
Collapse
|
4
|
Xu Y, Zhu X, Ma X, Xiong H, Zeng Z, Peng H, Hu J. Enzymatic production of trans-free shortening from coix seed oil, fully hydrogenated palm oil and Cinnamomum camphora seed oil. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|