1
|
Fortunato M, Taddeo F, Vitiello R, Turco R, Tesser R, Russo V, Di Serio M. Tailoring Synthetic Pelargonic Acid Esters for Bio-Based Lubricant Applications: Exploring the Relationship between Structure and Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:12406-12413. [PMID: 37621693 PMCID: PMC10445259 DOI: 10.1021/acssuschemeng.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Pelargonic acid (PA) is commercially obtained by oxidative cleavage of fatty acid double bonds. Its esters are interesting compounds used to create bio-based products. An industrially relevant application of these compounds is in the field of solvent manufacturing and formulation of green lubricating oils. The physical-chemical and rheological properties of these esters are influenced by the structural features of the alcohol used as starting materials, such as chain length, number of unsaturation, and degree of branching. This work provides an in-depth study of the existing structure-properties relations for fatty acid alkyl esters obtained from PA and different alcohols [i.e., 2-ethylhexanol (EtHex), ethylene glycol, 1,3-propanediol, 1,4-butanediol, trimethylolpropane, and pentaerythritol]. The aim is to evaluate the use of the synthesized product for the formulation of bio-based lubricants. The chosen alcohols are frequently employed in the preparation of bio-based lubricants. In addition, most of them, such as EtHex and diols, can be derived from biomass sources, contributing to the sustainability of the obtained products. For comparison purposes, some of these alcohols were also used for the synthesis of the corresponding oleic acid esters, which were chosen as a benchmark due to their common use in the synthesis of bio-based lubricants. The influence of the structural factors on the viscosity, pour point (PP), and oxidation stability of the synthesized esters was highlighted by comparing the obtained results. Pelargonates showed lower viscosities and higher PPs than that of the oleates, but they present high stabilities to the oxidation due to the absence of unsaturation.
Collapse
Affiliation(s)
| | - Francesco Taddeo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Rosa Vitiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Rosa Turco
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Riccardo Tesser
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Vincenzo Russo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| |
Collapse
|
2
|
Crăciunescu I, Ispas GM, Ciorîța A, Leoștean C, Illés E, Turcu RP. Novel Magnetic Composite Materials for Dental Structure Restoration Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1215. [PMID: 37049307 PMCID: PMC10097343 DOI: 10.3390/nano13071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In general, magnetic nanoparticles are not often used in dental applications due to some limitations of these materials, such as aggregation problems and low mechanical and chemical resistance but also esthetic problems due to their black color. Our research presents the synthesis of novel magnetic dental composite materials based on magnetic nanoparticles, functionalized and properly coated to overcome the limitations of using magnetic nanoparticles in dental applications. The composites were prepared using a preparation flow containing several integrated reaction steps used previously sequentially. An adequate and deep characterization of dental magnetic composites has been carried out in order to demonstrate that each limitation has been successfully overcome. It was proved that each component brings particular benefits in dental interventions: Fe3O4 nanoparticles have biocompatible, non-toxic properties and also antimicrobial effects; the SiO2 layer significantly increases the mechanical strength of the material; and the Ca(OH)2 layer initiates local calcification and significantly improves the color of the dental composite material. Due to magnetic properties, an innovative application approach on the tooth surface can be achieved under an external magnetic field, which, compared to conventional methods, has a major impact on reducing the occurrence of dental caries under filling materials as well as on reducing microfractures.
Collapse
Affiliation(s)
- Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (G.M.I.); (A.C.); (R.P.T.)
| | - George Marian Ispas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (G.M.I.); (A.C.); (R.P.T.)
| | - Alexandra Ciorîța
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (G.M.I.); (A.C.); (R.P.T.)
- Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Cristian Leoștean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (G.M.I.); (A.C.); (R.P.T.)
| | - Erzsébet Illés
- Department of Food Engineering, University of Szeged, 6724 Szeged, Hungary;
| | - Rodica Paula Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (G.M.I.); (A.C.); (R.P.T.)
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
5
|
Vondran J, Peters M, Schnettger A, Sichelschmidt C, Seidensticker T. From tandem to catalysis – organic solvent nanofiltration for catalyst separation in the homogeneously W-catalyzed oxidative cleavage of renewable methyl 9,10-dihydroxystearate. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphotungstic acid is applied as a homogeneous catalyst for oxidative cleavage of methyl 9,10-dihydroxystearate, allowing for retention of the catalyst via organic solvent nanofiltration.
Collapse
Affiliation(s)
- Johanna Vondran
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc Peters
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Alexander Schnettger
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Christian Sichelschmidt
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Thomas Seidensticker
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Yun D, Zhang Z, Flaherty DW. Catalyst and reactor design considerations for selective production of acids by oxidative cleavage of alkenes and unsaturated fatty acids with H 2O 2. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic insight and measurements of apparent kinetics for productive and non-productive reaction pathways guide the development of semi-batch reactors and conditions for stable production of carboxylic acids and diacids over supported tungstate catalysts.
Collapse
Affiliation(s)
- Danim Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - Zhongyao Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
7
|
Slug flow as tool for selectivity control in the homogeneously catalysed solvent-free epoxidation of methyl oleate. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCatalytic oxidation of sustainable raw materials like unsaturated fats and oils, or fatty acids and their esters, lead to biobased, high-value products. Starting from technical grade methyl oleate, hydrogen peroxide as a green oxidant produces only water as by-product. A commercially available, cheap water-soluble tungsten catalyst is combined with Aliquat® 336 as a phase-transfer agent in solvent-free reaction conditions. In this study, we first report the transfer of this well-known batch system into continuous mode. The space–time yield is improved from 0.08 kg/L.h in batch to 1.29 kg/L.h in flow mode. The improved mass transfer and reduced back mixing of the biphasic liquid–liquid slug flow allows for selectivity control depending on physical parameters of slug flow namely volumetric phase ratio, volumetric flow rate, and slug length. Even though the product, methyl 9,10-epoxystearate is obtained at a maximum selectivity of only 58% in flow mode, higher space time yield combined with possible reactant recycling in flow mode offers a promising avenue of research. This work analyses the use of slug flow parameters as tools for controlling selectivity towards oxidation products of methyl oleate.
Collapse
|
8
|
Upadhyay R, Rana R, Sood A, Singh V, Kumar R, Srivastava VC, Maurya SK. Heterogeneous vanadium-catalyzed oxidative cleavage of olefins for sustainable synthesis of carboxylic acids. Chem Commun (Camb) 2021; 57:5430-5433. [PMID: 33949501 DOI: 10.1039/d1cc01742j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of green and sustainable processes to synthesize active pharmaceutical ingredients and key starting materials is a priority for the pharmaceutical industry. A green and sustainable protocol for the oxidative cleavage of olefins to produce pharmaceutically and biologically valuable carboxylic acids is achieved. The developed protocol involves 70% aq. TBHP as an oxidant over a heterogeneous vanadium catalyst system. Notably, the synthesis of industrially important azelaic acid from various renewable vegetable oils is accomplished. The catalyst could be recycled for up to 5 cycles without significant loss in yield and the protocol was successfully demonstrated at the gram-scale.
Collapse
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Rohit Rana
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Aakriti Sood
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| | - Vikash Singh
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
9
|
Phung Hai TA, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021; 22:1770-1794. [PMID: 33822601 DOI: 10.1021/acs.biomac.0c01610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.
Collapse
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Marissa Tessman
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Nitin Neelakantan
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Anton A Samoylov
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuri Ito
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Bhausaheb S Rajput
- Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| | - Naser Pourahmady
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States.,Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| |
Collapse
|
10
|
Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions. SUSTAINABILITY 2021. [DOI: 10.3390/su13073902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Industries currently rely on chicory and Jerusalem artichoke for inulin extraction but also cardoon is proved to synthetize and store high quantity of inulin in roots as well. Cardoon is a multipurpose crop, well adapted to marginal lands, whose main residues at the end of cropping cycle consist of roots. However, cardoon roots are a suitable source of inulin, that is of high interest for new generation biodegradable bioplastics production. On the other hand, a sustainable supply chain for inulin production from cardoon roots has not been developed yet. In particular, in the inulin supply chain the most critical part is storage, which can negatively affect both cost and inulin quantity. In the present study the effect on inulin content in cardoon roots stored as dried chipped roots (CRt) and dried whole roots (WRt) was investigated in a 6-month storage trial. Our findings suggest that chipping before storage did not affect the inulin content during the storage. Furthermore, it reduced the time needed for drying by 33.3% and increased the bulk density by 154.9% with the consequent reduction of direct cost for drying, transportation and storage.
Collapse
|
11
|
Yun D, Ayla EZ, Bregante DT, Flaherty DW. Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H 2O 2 over Tungsten Oxide Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danim Yun
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - E. Zeynep Ayla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Taieb Brahimi F, Belkhadem F, Trari B, Othman AA. Diazole and triazole derivatives of castor oil extract: synthesis, hypoglycemic effect, antioxidant potential and antimicrobial activity. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0342191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ricinoleate triglyceride was extracted from castor-oil seeds grown in Algeria and isolated by catalytically methanolyse to methyl ricinoleate. Six diazole and triazole derivatives of ricinoleic acid were synthesized and characterized: 1,3,4-oxadiazole-5-thione (4); 1,3,4-thiadiazole-5-thione (5); 4-N-amino-1,2,4-triazole-5-thiol (7); 1,2,4-triazole-5-thione (9); 5-amino-1,3,4-oxadiazole (10) and 5-amino-1,3,4-thiadiazole (11). The antibacterial and antifungal screening data of synthesized compounds showed appreciable inhibition and among them, 5, 7 and 8 showed more inhibition on Gram positive Enterococcus faecalis than reference ampiciline; while compounds 1, 7, 8, 10 and 11 showed competitive antifungal effects compared to reference amphotericin B. In addition, all synthesized compounds (1-11) showed competitive antioxidant properties, particularly compounds 7 at 125, 250, 500 and 1000 μg/mL and compounds 4, 5 and 9 at a concentration of 1000 μg/mL. The intermediate compounds 1, 2 and 8 showed anti-α-amylase activity at various concentrations in the range of IC50 = (120.25 ± 1.17 - 130.42 ± 2.48). Oxadiazole 4 showed the best α-amylase inhibition by 78.5% at a concentration of 1000 μg/mL.
Collapse
|
13
|
From Cardoon Lignocellulosic Biomass to Bio-1,4 Butanediol: An Integrated Biorefinery Model. Processes (Basel) 2020. [DOI: 10.3390/pr8121585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biorefineries are novel, productive models that are aimed at producing biobased alternatives to many fossil-based products. Biomass supply and overall energy consumptions are important issues determining the overall biorefinery sustainability. Low-profit lands appear to be a potential option for the sustainable production of raw materials without competition with the food chain. Cardoon particularly matches these characteristics, thanks to the rapid growth and the economy of the cultivation and harvesting steps. An integrated biorefinery processing 60 kton/y cardoon lignocellulosic biomass for the production of 1,4-butanediol (bio-BDO) is presented and discussed in this work. After designing the biorefinery flowsheet, the mass and energy balances were calculated. The results indicated that the energy recovery system has been designed to almost completely cover the entire energy requirement of the BDO production process. Despite the lower supply of electricity, the energy recovery system can cover around 78% of the total electricity demand. Instead, the thermal energy recovery system was able to satisfy the overall demand of the sugar production process entirely, while BDO purification columns require high-pressure steam. The thermal energy recovery system can cover around 83% of the total thermal demand. Finally, a cradle-to-gate simplified environmental assessment was conducted in order to evaluate the environmental impact of the process in terms of carbon footprint. The carbon footprint value calculated for the entire production process of BDO was 2.82 kgCO2eq/kgBDO. The cultivation phase accounted for 1.94 kgCO2eq/kgBDO, the transport had very little impact, only for 0.067 kgCO2eq/kgBDO, while the biorefinery phase contributes for 0.813 kgCO2eq/kgBDO.
Collapse
|
14
|
Peckh K, Lisicki D, Talik G, Orlińska B. Oxidation of Long-Chain α-Olefins Using Environmentally-Friendly Oxidants. MATERIALS 2020; 13:ma13204545. [PMID: 33066275 PMCID: PMC7602050 DOI: 10.3390/ma13204545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Studies on the oxidation of α-olefins via the two-stage method are presented. The new method consisted of oxidizing C30+ α-olefins with hydrogen peroxide (2 equiv.) and subsequent oxidation with oxygen. Products with high acid numbers (29–82 mgKOH/g) and saponification numbers (64–140 mgKOH/g) were obtained and compared with products obtained using only hydrogen peroxide or oxygen. It was demonstrated that H2O2 can be partially replaced by oxygen in the oxidative cleavage reaction of α-olefins. N-hydroxyphthalimide in combination with Co(acac)2 demonstrated high activity in the oxidation stage using oxygen.
Collapse
|
15
|
Conversion of Oleic Acid into Azelaic and Pelargonic Acid by a Chemo-Enzymatic Route. Molecules 2020; 25:molecules25081882. [PMID: 32325747 PMCID: PMC7221618 DOI: 10.3390/molecules25081882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
A chemo-enzymatic approach for the conversion of oleic acid into azelaic and pelargonic acid is herein described. It represents a sustainable alternative to ozonolysis, currently employed at the industrial scale to perform the reaction. Azelaic acid is produced in high chemical purity in 44% isolation yield after three steps, avoiding column chromatography purifications. In the first step, the lipase-mediated generation of peroleic acid in the presence of 35% H2O2 is employed for the self-epoxidation of the unsaturated acid to the corresponding oxirane derivative. This intermediate is submitted to in situ acid-catalyzed opening, to afford 9,10-dihydroxystearic acid, which readily crystallizes from the reaction medium. The chemical oxidation of the diol derivative, using atmospheric oxygen as a stoichiometric oxidant with catalytic quantities of Fe(NO3)3∙9∙H2O, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), and NaCl, affords 9,10-dioxostearic acid which is cleaved by the action of 35% H2O2 in mild conditions, without requiring any catalyst, to give pelargonic and azelaic acid.
Collapse
|
16
|
Douniama‐Lönn GV, Ngakegni‐Limbili AC, Valentin R, Nsamoto H, Cerny M, Mouloungui Z, Ouamba JM. Fractionability of saturated and unsaturated fatty acid concentrates of rambutan oil with a freeze‐thaw cold crystallization procedure. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- G. V. Douniama‐Lönn
- Laboratoire de Chimie agroindustrielle LCA INP‐ENSIACET Université de Toulouse INRA Toulouse France
- Unité de Chimie du Végétal et de la vie (UC2V) BP 69 Faculté des Sciences et Techniques Université Marien Ngouabi Brazzaville Congo
| | - A. C. Ngakegni‐Limbili
- Unité de Chimie du Végétal et de la vie (UC2V) BP 69 Faculté des Sciences et Techniques Université Marien Ngouabi Brazzaville Congo
| | - R. Valentin
- Laboratoire de Chimie agroindustrielle LCA INP‐ENSIACET Université de Toulouse INRA Toulouse France
| | - H. Nsamoto
- Laboratoire de Chimie agroindustrielle LCA INP‐ENSIACET Université de Toulouse INRA Toulouse France
| | - M. Cerny
- Laboratoire de Chimie agroindustrielle LCA INP‐ENSIACET Université de Toulouse INRA Toulouse France
| | - Z. Mouloungui
- Laboratoire de Chimie agroindustrielle LCA INP‐ENSIACET Université de Toulouse INRA Toulouse France
| | - J. M. Ouamba
- Unité de Chimie du Végétal et de la vie (UC2V) BP 69 Faculté des Sciences et Techniques Université Marien Ngouabi Brazzaville Congo
| |
Collapse
|
17
|
Direct and Solvent‐Free Oxidative Cleavage of Double Bonds in High‐Oleic Vegetable Oils. ChemistrySelect 2020. [DOI: 10.1002/slct.201903516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Pyszny D, Piotrowski T, Orlińska B. Oxidative Cleavage of Long-Chain Terminal Alkenes to Carboxylic Acids. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Pyszny
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Tomasz Piotrowski
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Beata Orlińska
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
19
|
Nicolì F, Negro C, Nutricati E, Vergine M, Aprile A, Sabella E, Damiano G, De Bellis L, Luvisi A. Accumulation of Azelaic Acid in Xylella fastidiosa-Infected Olive Trees: A Mobile Metabolite for Health Screening. PHYTOPATHOLOGY 2019; 109:318-325. [PMID: 30566025 DOI: 10.1094/phyto-07-18-0236-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monitoring Xylella fastidiosa is critical for eradicating or at least containing this harmful pathogen. New low-cost and rapid methods for early detection capability are very much needed. Metabolomics may play a key role in diagnosis; in fact, mobile metabolites could avoid errors in sampling due to erratically distributed pathogens. Of the various different mobile signals, we studied dicarboxylic azelaic acid (AzA) which is a key molecule for biotic stress plant response but has not yet been associated with pathogens in olive trees. We found that infected Olea europaea L. plants of cultivars Cellina di Nardò (susceptible to X. fastidiosa) and Leccino (resistant to the pathogen) showed an increase in AzA accumulation in leaf petioles and in sprigs by approximately seven- and sixfold, respectively, compared with plants negative to X. fastidiosa or affected by other pathogens. No statistically significant variation was found between the X. fastidiosa population level and the amount of AzA in either of the plant tissues, suggesting that AzA accumulation was almost independent of the amount of pathogen in the sample. Furthermore, the association of AzA with X. fastidiosa seemed to be reliable for samples judged as potentially false-negative by quantitative polymerase chain reaction (cycle threshold [Ct] > 33), considering both the absolute value of AzA concentration and the values normalized on negative samples, which diverged significantly from control plants. The accumulation of AzA in infected plants was partially supported by the differential expression of two genes (named OeLTP1 and OeLTP2) encoding lipid transport proteins (LTPs), which shared a specific domain with the LTPs involved in AzA activity in systemic acquired resistance in other plant species. The expression level of OeLTP1 and OeLTP2 in petiole samples showed significant upregulation in samples positive to X. fastidiosa of both cultivars, with higher expression levels in positive samples of Cellina di Nardò compared with Leccino, whereas the two transcripts had a low expression level (Ct > 40) in negative samples of the susceptible cultivar. Although the results derived from the quantification of AzA cannot confirm the presence of the erratically distributed X. fastidiosa, which can be definitively assessed by traditional methods, we believe they represent a fast and cheap screening method for large-scale monitoring.
Collapse
Affiliation(s)
- Francesca Nicolì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Gina Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
20
|
Ancient Organic Residues as Cultural and Environmental Proxies: The Value of Legacy Objects. SUSTAINABILITY 2019. [DOI: 10.3390/su11030656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Often treated as an accessory science, organic residue analysis (ORA) has the capacity to illuminate otherwise hidden aspects of ancient technology, culture, and economy, and therein can play a central role in archaeological inquiry. Through ORA, both the intact vessel freshly excavated from a tomb and the sherd tucked away in a museum storage closet can offer insights into their contents, their histories, and the cultures that created them—provided the results can be carefully calibrated to account for their treatment during and after excavation. The case study below presents ORA data obtained from a range of artifacts from Late Bronze Age Crete, setting results from freshly-excavated and legacy objects alongside one another. Although legacy objects do tend to yield diminished results from both a quantitative and qualitative perspective, our comparative work has demonstrated both their value and untapped potential when their object biographies are carefully considered. It also sheds light on biomarker degradation processes, which have implications for methodologies of extraction and interpretation of legacy objects. Comparative studies such as these broaden the pool of viable ORA candidates, and therein amplify ORA’s ability to reveal patterns of consumption as well as ecological and environmental change. They also highlight the role and value of data-sharing in collaborative environments such as the OpenARCHEM archaeometric database.
Collapse
|
21
|
Guicheret B, Bertholo Y, Blach P, Raoul Y, Métay E, Lemaire M. A Two-Step Oxidative Cleavage of 1,2-Diol Fatty Esters into Acids or Nitriles by a Dehydrogenation-Oxidative Cleavage Sequence. CHEMSUSCHEM 2018; 11:3431-3437. [PMID: 30058760 DOI: 10.1002/cssc.201801640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Dehydrogenative oxidation of vicinal alcohols catalyzed by a commercially 64 wt.% Ni/SiO2 catalyst leads to the formation of α-hydroxyketone. This first step was developed without additional solvent according to two protocols: "under vacuum" or "with an olefin scavenger". The synthesis of ketols was carried out with good conversions and selectivities. The recyclability of the supported nickel was also studied. Acyloin was then cleaved with oxidative reagent "formic acid/hydrogen peroxide", which is cheap and can be used on a large scale for industrial oxidation processes. The global yield of this sequential system was up to 80 % to pelargonic acid and azelaic acid monomethyl ester without intermediate purification. By treating the acyloin intermediate with hydroxylamine, nitriles were obtained with a good selectivity.
Collapse
Affiliation(s)
- Boris Guicheret
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Yann Bertholo
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Philippe Blach
- Oleon, Avril Group, Rue les Rives de l'Oise, 60280, Compiègne, France
| | - Yann Raoul
- Oleon, Avril Group, Rue les Rives de l'Oise, 60280, Compiègne, France
| | - Estelle Métay
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Marc Lemaire
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| |
Collapse
|
22
|
Lu M, Peng L, Xie Q, Nie Y, Liu X, Lu X, Ji J. Oxidative Cleavage of Methyl 9,10‐Epoxystearate over WO
3
/MCM‐41 for Methyl 9‐Oxononanoate Production. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Meizhen Lu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Libo Peng
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Qinglong Xie
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Yong Nie
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Xuejun Liu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Xianghong Lu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Jianbing Ji
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| |
Collapse
|
23
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
24
|
New Insights on the Oxidation of Unsaturated Fatty Acid Methyl Esters Catalyzed by Niobium(V) Oxide. A Study of the Catalyst Surface Reactivity. Catalysts 2018. [DOI: 10.3390/catal8010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Hajra B, Sultana N, Guria C, Pathak AK, Saxena VK. Liquid Phase Selective Catalytic Oxidation of Oleic Acid to Azelaic Acid Using Air and Transition Metal Acetate Bromide Complex. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Sustainable Oxidative Cleavage of Vegetable Oils into Diacids by Organo-Modified Molybdenum Oxide Heterogeneous Catalysts. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3047-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Enferadi-Kerenkan A, Ello AS, Do TO. Synthesis, Organo-Functionalization, and Catalytic Properties of Tungsten Oxide Nanoparticles As Heterogeneous Catalyst for Oxidative Cleavage of Oleic Acid As a Model Fatty Acid into Diacids. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Aimé Serge Ello
- Department of Chemical
Engineering, Université Laval, Québec, G1V 0A6, Canada
- Laboratoire de Chimie Physique, Université Félix Houphouët-Boigny de Cocody, 22 bp 582 Abidjan, Cote d’Ivoire
| | - Trong-On Do
- Department of Chemical
Engineering, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
28
|
Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study. ENERGIES 2016. [DOI: 10.3390/en9090748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Extraction of Oleic Acid from Moroccan Olive Mill Wastewater. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1397852. [PMID: 26933663 PMCID: PMC4736953 DOI: 10.1155/2016/1397852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022]
Abstract
The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.
Collapse
|
30
|
Synthesis of Mesoporous Tungsten Oxide/γ-Alumina and Surfactant-Capped Tungsten Oxide Nanoparticles and Their Catalytic Activities in Oxidative Cleavage of Oleic Acid. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2015-0101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Unsaturated fatty acids can be converted into mono and dicarboxylic acids, which are applicably valuable materials, through oxidative cleavage reaction in the presence of a highly efficient catalyst/oxidant system. In this work, two types of advanced heterogeneous catalysts have been developed; (i) high surface area mesoporous tungsten oxide/γ-alumina mixed metal oxide, and (ii) surfactant-capped tungsten oxide nanoparticles. Various technique including N2 adsorption/desorption isotherms, XRD, SEM, EDS, TGA and catalytic test were used to monitor the physicochemical and catalytic properties of these materials. The characterization results revealed that type (i) materials exhibit high surface area and narrow particle size distribution, and the used surfactant could quantitatively enough cap the surface of type (ii) materials. The catalytic activities of these materials in the oxidative cleavage of oleic acid with H2O2 as oxidant were investigated. GC-MS was used to determine the produced amounts of desired products, azelaic and pelargonic acids. The catalytic test results showed more than 90 % conversion for type (ii) catalyst in 5 h reaction at 120 °C with acceptable production yields for azelaic and pelargonic acids. The significantly higher activity of this catalyst compared to type (i) arises from the interesting surface properties of tungsten oxides nanoparticles, which make them able to exploit the good features of homogeneous and heterogeneous catalysts.
Collapse
|
31
|
Enferadi Kerenkan A, Béland F, Do TO. Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: a review and perspective. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01118c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent catalytic systems reported for the oxidative cleavage of UFAs have been investigated in three classes; homogeneous, heterogeneous, and semi-heterogeneous catalysts.
Collapse
Affiliation(s)
| | - François Béland
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| | - Trong-On Do
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| |
Collapse
|
32
|
Sustainable Process for Production of Azelaic Acid Through Oxidative Cleavage of Oleic Acid. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2727-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Kadyrov R, Hackenberger D. Oxidative Cleavage of Long Chain Olefins to Carboxylic Acids with Hydrogen Peroxide. Top Catal 2014. [DOI: 10.1007/s11244-014-0304-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|