1
|
Nguyen PC, Nguyen MTT, Ban SY, Choi KO, Park JH, Tran PL, Pyo JW, Kim J, Park JT. Enzymatic synthesis and characterization of novel lipophilic inotodiol-oleic acid conjugates. Food Chem 2024; 437:137897. [PMID: 37918158 DOI: 10.1016/j.foodchem.2023.137897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
In this study, we establish an efficient enzymatic approach for producing novel inotodiyl-oleates (IOs) from pure inotodiol and oleic acid to improve the properties of inotodiol. For the esterification between inotodiol and oleic acid, CALA and n-hexane were the optimal biocatalyst and solvents for forming IOs with 80.17% conversion yield. These IOs comprised two distinct monoesters, the C3 or C22 ester forms of inotodiol. Intriguingly, no diesters were detected. The IOs had a melting point of 53.48 °C, much lower than that of inotodiol (192.06 °C). The in vitro digestion rate of IOs (25-28%) was significantly (p < 0.05) lower than that of cholesteryl-oleate (60%). Additionally, IOs exhibited much lower in vivo absorption than inotodiol when orally administered using different formulations (p < 0.05). The results indicated that IOs were resistant to enzymatic digestion in the small intestine, which could be advantageous in targeting the large intestine for disease treatments.
Collapse
Affiliation(s)
- Phu Cuong Nguyen
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - My Tuyen Thi Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, Can Tho University, Can Tho 94000, Viet Nam
| | - So-Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Kyeong-Ok Choi
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Hyun Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, An Giang University, Long Xuyen 880000, Viet Nam; Vietnam National University of Ho Chi Minh City, Ho Chi Minh 700000, Viet Nam
| | - Jang-Won Pyo
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Xie L, Zhang T, Karrar E, Zheng L, Xie D, Jin J, Wang X, Jin Q. Purification, characterization, and cellular antioxidant activity of 4,4‐dimethylsterols and 4‐desmethylsterols. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangliang Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Emad Karrar
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Liyou Zheng
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Dan Xie
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
3
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
4
|
Bin Z, Ting F, Yan Y, Feng L, Adesanya Idowu O, Hongbo S. Magnetic cross-linked enzyme aggregate based on ionic liquid modification as a novel immobilized biocatalyst for phytosterol esterification. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel immobilized enzyme CRL-FIL-CLEAs@Fe3O4 with enhanced activities and stabilities was successfully prepared by a cross-linked lipase aggregate method for phytosterol esterification.
Collapse
Affiliation(s)
- Zou Bin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Feng Ting
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Yan Yan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Liu Feng
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Onyinye Adesanya Idowu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Suo Hongbo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
5
|
Xie L, Zhang T, Karrar E, Zheng L, Xie D, Jin J, Chang M, Wang X, Jin Q. Insights into an α-Glucosidase Inhibitory Profile of 4,4-Dimethylsterols by Multispectral Techniques and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15252-15260. [PMID: 34898206 DOI: 10.1021/acs.jafc.1c06347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inhibition of α-glucosidase activity is closely related to the treatment of type 2 diabetes. However, the potential mechanism by which 4,4-dimethylsterols inhibit α-glucosidase has not been elucidated. In this work, the inhibitory activity and mechanism of 4,4-dimethylsterols against α-glucosidase were studied through kinetic analysis, fluorescence spectroscopy, ultraviolet spectroscopy, circular dichroism, and molecular docking. 4,4-Dimethylsterols showed higher inhibition activity against α-glucosidase than acarbose with an IC50 value of 0.71 mg/mL and a noncompetitive inhibition type. They could bind to α-glucosidase through van der Waals forces and hydrogen bonds and quench its endofluorescence with a static quenching mechanism. Changes in the secondary structure of α-glucosidase were induced by its binding interaction with 4,4-dimethylsterols. Molecular docking further indicated that a hydrogen bond was generated between OH at the C-3 position of 4,4-dimethylsterols and the α-glucosidase residue Arg-442. This study provides new insights into the potential utilization of 4,4-dimethylsterols as antidiabetic phytochemicals in dietary supplements.
Collapse
Affiliation(s)
- Liangliang Xie
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Dan Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Jun Jin
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Highly efficient synthesis of 4,4-dimethylsterol oleates using acyl chloride method through esterification. Food Chem 2021; 364:130140. [PMID: 34175623 DOI: 10.1016/j.foodchem.2021.130140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
In this study, the 4,4-dimethylsterol oleates were efficiently synthesized through esterification of 4,4-dimethylsterols and oleoyl chloride. The impact of reaction parameters on the 4,4-dimethylsterol conversion were investigated. The 4,4-dimethylsterol conversion increased with pyridine dosage, molar ratio of oleoyl chloride to 4,4-dimethylsterols, and temperature. The highest conversion of 99.27% was obtained with molar ratio of 1.1:1 at 313 K for 60 min. A second-order kinetic model describing acyl chloride esterification featuring high correlation coefficients was established. Arrhenius-Van't Hoff plot suggested activation energy and pre-exponential factor were 15.54 kJ mol-1 and 1.78 × 103 L mol-1 min-1, respectively. The molecular structure of 4,4-dimethylsterol oleates were finally identified by attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), ultra-performance liquid chromatography system coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS), and nuclear magnetic resonance (NMR).
Collapse
|
7
|
Wang X, Xiao B, Yang G, Chen J, Liu W. Enzymatic preparation of phytosterol esters with fatty acids from high-oleic sunflower seed oil using response surface methodology. RSC Adv 2021; 11:15204-15212. [PMID: 35424029 PMCID: PMC8698641 DOI: 10.1039/d1ra01486b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Phytosterol esters are functional compounds that can effectively reduce plasma cholesterol concentration, and have wide applications in the food industry. In this study, a simple and efficient enzymatic method was successfully applied to synthesize phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil. Among the tested lipases, Candida rugosa lipase (CRL) exhibited higher catalytic activity in the esterification of phytosterols with fatty acids (oleic acid 84%) from high-oleic sunflower seed oil. Box-Behnken design and response surface methodology were used to investigate the influence of reaction factors on the conversion of phytosterols. The maximum conversion of phytosterols (96.8%) and yield of phytosterol esters (92%) could be obtained under optimal conditions: reaction temperature 50 °C, a molar ratio of phytosterols to fatty acids at 1 : 2.3, enzyme loading of 5.8%, isooctane volume of 2 mL and reaction time of 2 h. It was noteworthy that this enzymatic esterification method indeed expended a much shorter reaction time (2 h) than that observed in previous reports. In general, the enzymatic preparation of phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil will be a simple and rapid method for producing unsaturated fatty acid esters of phytosterol with both higher oil solubility and oxidative stability, which is beneficial as functional food ingredients.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Bing Xiao
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Guolong Yang
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Jingnan Chen
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Wei Liu
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| |
Collapse
|
8
|
Liu W, Xiao B, Wang X, Chen J, Yang G. Solvent-free synthesis of phytosterol linoleic acid esters at low temperature. RSC Adv 2021; 11:10738-10746. [PMID: 35423575 PMCID: PMC8695894 DOI: 10.1039/d1ra00798j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Phytosterol unsaturated fatty acid esters show much higher oil solubility than free phytosterol. Thus, development of a green and low-cost method for the preparation of phytosterol fatty acid esters is highly desirable in the food industry. Herein, we have developed a simple chemical method toward efficient preparation of phytosterol linoleic acid esters at very mild temperature (60 °C) using 4-dodecylbenzenesulfonic acid (DBSA) as the catalyst. In this work, low-temperature esterification of phytosterols (soybean sterol) with linoleic acid could produce the corresponding phytosterol esters above 95% conversion under solvent-free conditions. In addition, this simple method could be applied to produce phytosterol esters through esterification of phytosterol with an unsaturated fatty acid mixture resulting from the hydrolysis of various vegetable oils. Importantly, no extra organic solvents and no extra water-removal operations or equipment were required in this chemical esterification method. The mechanism investigation suggested that the DBSA-catalyzed low-temperature esterification would form micro-emulsions of water-in-oil (W/O), which could achieve automatic separation of water from the hydrophobic system to avoid reverse reaction hydrolysis and rapidly promote the equilibrium reaction towards phytosterol esters. Herein, we have developed a simple chemical method toward efficient preparation of phytosterol linoleic acid esters through esterification at very mild temperature (60 °C) using 4-dodecylbenzenesulfonic acid (DBSA) as the catalyst.![]()
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +086-371-67758022 +086-371-67758022
| | - Bing Xiao
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +086-371-67758022 +086-371-67758022
| | - Xiaoping Wang
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +086-371-67758022 +086-371-67758022
| | - Jingnan Chen
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +086-371-67758022 +086-371-67758022
| | - Guolong Yang
- College of Food Science and Technology, Henan University of Technology Lianhua Street 100 Zhengzhou 450001 Henan Province P. R. China +086-371-67758022 +086-371-67758022
| |
Collapse
|
9
|
He WS, Li L, Wang H, Rui J, Cui D. Synthesis and cholesterol-reducing potential of water-soluble phytosterol derivative. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Highly effective solvent free esterification of phytosterols employing edible metal oxide-emulsifier as catalyst. Chem Phys Lipids 2018; 213:118-123. [DOI: 10.1016/j.chemphyslip.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
|
11
|
Wang H, Jia C, Xia X, Karangwa E, Zhang X. Enzymatic synthesis of phytosteryl lipoate and its antioxidant properties. Food Chem 2018; 240:736-742. [DOI: 10.1016/j.foodchem.2017.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
|