1
|
Zhu Z, Li X, Li X, Li J, Sun W, Gao Q, Zhang Y. Pulp cellulose-based core-sheath structure based on hyperbranched grafting strategy for development of reinforced soybean adhesive. Int J Biol Macromol 2024; 260:129520. [PMID: 38244738 DOI: 10.1016/j.ijbiomac.2024.129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Formaldehyde adhesive is the primary source of indoor formaldehyde pollution, posing a serious threat to human health. Soybean meal (SM), as an abundant biomacromolecule and co-product of soybean oil industry, emerges as a promising alternative to formaldehyde adhesive. However, the SM adhesive exhibits inferior water resistance and unsatisfactory bonding strength. In this study, a novel core-sheath structure with an inexpensive pulp cellulose core and a hyperbranched polymer sheath is synthesized and introduced into SM to develop a robust bio-based adhesive. Specifically, aldehyde-functionalized pulp cellulose is grafted with hyperbranched polyamide, which is terminated via epoxy groups, to synthesize a core-sheath hybrid (APC@HBPA-EP). The core-sheath APC@HBPA-EP serves as both a crosslinker and an enhancer. The results show that the wet shear strength of the modified SM adhesive exhibits a remarkable 520 % increase to 0.93 MPa, and its dry shear strength reaches 2.10 MPa, meeting the established indoor use standards. The Young's modulus of the modified SM adhesive shows a significant 282 % increase to 19.27 GPa. Additionally, the modified SM adhesive exhibited superior impact toughness (7.48 KJ/m2), which increased by 24 times compared with pure SM adhesive. This study provides a versatile strategy for developing robust protein adhesives, hydrogel patch, and composite coatings.
Collapse
Affiliation(s)
- Zezheng Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyu Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jianzhang Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Weisheng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qiang Gao
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Yi Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Li H, Wang S, Zhang X, Wu H, Wang Y, Zhou N, Zhao Z, Wang C, Zhang X, Wang X, Li C. Synthesis and Characterization of an Environmentally Friendly Phenol-Formaldehyde Resin Modified with Waste Plant Protein. Polymers (Basel) 2023; 15:2975. [PMID: 37447620 DOI: 10.3390/polym15132975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
To develop a lower-cost, excellent-performance, and environmentally friendly phenol-formaldehyde (PF) resin, soybean meal was used to modify PF resin, and soybean meal-phenol-formaldehyde (SMPF) resins were prepared. This reveals the effect of soybean meal on the structural, bonding, and curing properties of PF resin, which are very important for its applications in the wood industry. The resins' physicochemical properties and curing performance were investigated, showing that SMPF resins have higher curing temperatures than PF resin. The Fourier transform infrared spectroscopy results indicated that a cross-linking reaction occurred between the amino groups of soybean protein and the hydroxymethyl phenol. Moreover, with the addition of soybean meal, the viscosity of SMPF increased while the gel time decreased. It is worth mentioning that SMPF-2 resin has favorable viscosity, short gel time, low curing temperature (135.78 °C), and high water resistance and bonding strength (1.01 MPa). Finally, all the plywoods bonded with SMPF resins have good water resistance and bonding strength, which could meet the standard (GB/T 17657-2013, type I) for plywood. The optimized SMPF resins showed the potential for application to partially replace PF resin in the wood industry.
Collapse
Affiliation(s)
- Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Sen Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiang Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Wu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Na Zhou
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Zijie Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaofan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Bureau of Agricultural and Rural Affairs, Luanchuan County, Luoyang 471500, China
| | - Xian Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Chen Y, Lyu Y, Yuan X, Ji X, Zhang F, Li X, Li J, Zhan X, Li J. A biomimetic adhesive with high adhesion strength and toughness comprising soybean meal, chitosan, and condensed tannin-functionalized boron nitride nanosheets. Int J Biol Macromol 2022; 219:611-625. [PMID: 35952812 DOI: 10.1016/j.ijbiomac.2022.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/19/2022]
Abstract
Soybean meal (SM)-based adhesive can solve the issues of formaldehyde emission and over-reliance of aldehyde-based resins but suffers from poor water resistance, weak adhesion strength, and high brittleness. Herein, a high-performance adhesive inspired by lobster cuticular sclerotization was developed using catechol-rich condensed tannin-functionalized boron nitride nanosheets (CT@BNNSs), amino-containing chitosan (CS), and SM (CT@BNNSs/CS/SM). The oxidative crosslinking between the catechol and amino, initiated by oxygen at high temperatures, formed a strengthened and water-resistant interior network. These strong intermolecular interactions induced by phenol-amine synergy accompanied by the reinforcement of uniformly dispersed BNNSs improved the load transfer and energy dissipation capacity, endowing the adhesive with great cohesion strength. Given these synergistic effects, the biomimetic CT@BNNSs/CS/SM adhesive caused noticeable improvements in water tolerance, mechanical strength, and toughness over the neat SM adhesive, e.g., enhanced wet shear strength (1.46 vs. 0.66 MPa, respectively), boiling water shear strength (0.92 vs. 0.43 MPa, respectively), and debonding work (0.368 vs. 0.113 J, respectively). Thus, this study provided a green and low-cost bionic strategy for the preparation of high-performance biomass adhesives.
Collapse
Affiliation(s)
- Yinuo Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yan Lyu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Ximing Yuan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xinyu Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Fudong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xiaona Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; Key Laboratory of Wood Materials Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Xianxu Zhan
- DeHua TB New Decoration Materials Co., Ltd., Enterprise of Graduate Research Station of Jiangsu Province, Huzhou, Zhejiang 313200, China
| | - Jiongjiong Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; DeHua TB New Decoration Materials Co., Ltd., Enterprise of Graduate Research Station of Jiangsu Province, Huzhou, Zhejiang 313200, China.
| |
Collapse
|
4
|
Zhang B, Wang J, Zhang F, Wu L, Guo B, Gao Z, Zhang L. Preparation of a High-Temperature Soybean Meal-Based Adhesive with Desired Properties via Recombination of Protein Molecules. ACS OMEGA 2022; 7:23138-23146. [PMID: 35847336 PMCID: PMC9280771 DOI: 10.1021/acsomega.2c00833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A soybean protein-based adhesive with desired adhesion properties and low processing cost is prepared by a simple and practical method, which is of great significance to the sustainable utilization of resources and human health. Nevertheless, the protein of high-temperature soybean meal (HSM) has a high degree of denaturation and low solubility, endowing the resultant soybean-based adhesive with a high viscosity and unstable bonding performance. Herein, we propose the strategy of protein molecular recombination to improve the bonding properties of the adhesive. First, chemical denaturation was carried out under the combined action of sodium sulfite, sodium dodecyl sulfate, sodium hydroxide, urea, or sodium dodecyl sulfate/sodium hydroxide to reshape the structure of the protein to release active groups. Then, thermal treatment was employed to facilitate the protein repolymerization and protein-carbohydrate Maillard reaction. Meanwhile, the epichlorohydrin-modified polyamide (PAE) as a crosslinking agent was introduced to recombine unfolded protein and the products from Maillard reaction to develop an eco-friendly soy protein-based adhesive with an excellent and stable bonding performance. As expected, the highest cycle wet bond strength of the adhesive sample of 1.20 MPa was attained by adding a combination of 2% SDS and 0.5% sodium hydroxide, exceeding the value required for structural use (0.98 MPa) of 22.44% according to the JIS K6806-2003 commercial standard. Moreover, the adhesive possessed the preferable viscosity and viscosity stability accompanied by good wettability. Noteworthily, the adhesive had a short time of dry glue, which could be solved by combining it with soybean meal (SM) at the ratio of 30:10.
Collapse
Affiliation(s)
- Binghan Zhang
- Department
of Chemistry and Chemical Engineering, Heze
University, Heze, Shandong 274015, China
| | - Jinguo Wang
- Heze
Forestry Administration, Heze, Shandong 274015, China
| | - Fengrong Zhang
- Department
of Chemistry and Chemical Engineering, Heze
University, Heze, Shandong 274015, China
| | - Lishun Wu
- Department
of Chemistry and Chemical Engineering, Heze
University, Heze, Shandong 274015, China
| | - Baicheng Guo
- Department
of Chemistry and Chemical Engineering, Heze
University, Heze, Shandong 274015, China
| | - Zhenhua Gao
- Key
Laboratory of Bio-Based Material Science and Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, China
| | - Leipeng Zhang
- Center
for Composite Materials and Structure, Harbin
Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Chen S, Chen Y, Wang Z, Chen H, Fan D. Renewable bio-based adhesive fabricated from a novel biopolymer and soy protein. RSC Adv 2021; 11:11724-11731. [PMID: 35423652 PMCID: PMC8695950 DOI: 10.1039/d1ra00766a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, a bio-based soy protein adhesive derived from environmentally friendly and renewable enzymatic hydrolysis lignin (EHL), epoxidized soybean oil (ESO), and soy protein isolate (SPI), was successfully prepared. A novel biopolymer (EHL-ESO), as a multifunctional crosslinker, was firstly synthesized from modified EHL and ESO, and then crosslinked with soy protein isolate to obtain a bio-based soy protein adhesive. The structure, thermal properties, and adhesion performance of the obtained soy protein adhesives were determined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and wet shear strength. The maximum degradation temperature of SPI/EHL-ESO adhesives (332-343 °C) was higher than that of the pristine SPI adhesive (302 °C). Moreover, plywood bonded by the modified adhesive reached a maximum wet shear strength value of 1.07 MPa, a significant increase of 101.8% from the plywood bonded by pristine SPI adhesive. The enhancements in the thermal stability and wet shear strength were attributed to the formation of a dense crosslinking network structure. This work not only highlights the potential to replace petroleum-based polymers, but also presents a green approach to fabricate fully bio-based soy protein adhesive for preparing all-biomass wood composite materials.
Collapse
Affiliation(s)
- Shiqing Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091 China +86-10-62881937 +86-18500236090
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091 China +86-10-62881937 +86-18500236090
| | - Zongtao Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091 China +86-10-62881937 +86-18500236090
| | - Huan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091 China +86-10-62881937 +86-18500236090
| | - Dongbin Fan
- Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091 China +86-10-62881937 +86-18500236090
| |
Collapse
|
6
|
Evaluating Volatile Organic Compound Emissions from Cross-Laminated Timber Bonded with a Soy-Based Adhesive. BUILDINGS 2020. [DOI: 10.3390/buildings10110191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Volatile organic compound (VOC) emissions from indoor sources are large determinants of the indoor air quality (IAQ) and occupant health. Cross-laminated timber (CLT) is a panelized engineered wood product often left exposed as an interior surface finish. As a certified structural building product, CLT is currently exempt from meeting VOC emission limits for composite wood products and confirming emissions through California Department of Public Health (CDPH) Standard Method testing. In this study, small chamber testing was conducted to evaluate VOC emissions from three laboratory-produced CLT samples: One bonded with a new soy-based cold-set adhesive; a second bonded with a commercially available polyurethane (PUR) adhesive; and the third assembled without adhesive using dowels. A fourth commercially-produced eight-month-old sample bonded with melamine formaldehyde (MF) adhesive was also tested. All four samples were produced with Douglas-fir. The test results for the three laboratory-produced samples demonstrated VOC emissions compliance with the reference standard. The commercially-produced and aged CLT sample bonded with MF adhesive did not meet the acceptance criterion for formaldehyde of ≤9.0 µg/m3. The estimated indoor air concentration of formaldehyde in an office with the MF sample was 54.4 µg/m3; the results for the soy, PUR, and dowel samples were all at or below 2.5 µg/m3.
Collapse
|
7
|
Li Z, Zhao S, Wang Z, Zhang S, Li J. Biomimetic water-in-oil water/pMDI emulsion as an excellent ecofriendly adhesive for bonding wood-based composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122722. [PMID: 32335380 DOI: 10.1016/j.jhazmat.2020.122722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel and environmental strategy inspired by mussels is reported for the construction of a high-performance water-in-oil water/pMDI adhesive with strongly adherent catechol groups. It is found that the design of the biomimetic water-in-oil emulsion significantly increases the apparent viscosity and storage stability of the adhesive, which in turn influences the handling and bonding performance in practical application. Additionally, although the biomimetic emulsion design consumes part of active isocyanate groups in the pMDI, the contained catechol can serve as a reactive platform to induce secondary crosslinking interactions with the wood substrate to further improve the mechanical and adhesion performances of the modified pMDI adhesives. Consequently, compared to the pristine pMDI sample, the wet shear strength of the biomimetic water-in-oil water/pMDI adhesive is increased by 129.7 %, exhibiting that the obvious optimization of adhesion and water resistance properties. Overall, our findings provide new insights into exploiting novel and superior wood adhesives, and the constructed high-performance adhesive presents potential applications for sustainable wood products.
Collapse
Affiliation(s)
- Zhi Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhong Wang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Curing Dynamics of Soy Flour-Based Adhesives Enhanced by Waterborne Polyurethane. INT J POLYM SCI 2019. [DOI: 10.1155/2019/2916759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, thermogravimetric (TG) analysis was carried out to make clear the curing properties of soy flour-based adhesives (SFAs) enhanced by waterborne polyurethane (WPU) with different addition levels. The kinetic parameters were evaluated by a thermal dynamics method, including activation energy and preexponential factor. In addition, the structure characteristics of both soy flour and modified soy flour-based adhesives were tested by Fourier transform infrared spectroscopy (FTIR). The results revealed that the FTIR spectra of pristine soy flour-based adhesives were different from those of soy flour after alkali treatment and waterborne polyurethane modification. Furthermore, there were four main degradation phases in the derivative thermogravimetric (DTG) curves of modified soy-based adhesives while there were two phases of a defatted soy flour sample. The kinetics analysis demonstrated that the curing process could be described as a consecutive first-order curing process. Moreover, with the addition level of WPU growing, the apparent activation energy of each phase of the curing process was increasing compared with that in pristine soy-based adhesives.
Collapse
|
9
|
Zhang M, Zhang Y, Chen M, Gao Q, Li J. A High-Performance and Low-Cost Soy Flour Adhesive with a Hydroxymethyl Melamine Prepolymer. Polymers (Basel) 2018; 10:E909. [PMID: 30960834 PMCID: PMC6403609 DOI: 10.3390/polym10080909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022] Open
Abstract
To improve the performance of a soy flour (SF)-based adhesive, a low-cost hydroxymethyl melamine prepolymer (HMP) was synthesized and then used to modify the SF-based adhesive. The HMP was characterized, and the performance of the adhesive was evaluated, including its residual rate, functions, thermal stability, and fracture section. Plywood was fabricated to measure wet shear strength. The results indicated that the HMP preferentially reacted with polysaccharose in SF and formed a cross-linking network to improve the water resistance of the adhesive. This polysaccharose-based network also combined with the HMP self-polycondensation network and soy protein to form an interpenetrating network, which further improved the water resistance of the adhesive. With the addition of 9% HMP, the wet shear strength (63 °C) of the plywood was 1.21 MPa, which was 9.3 times that of the SF adhesive. With the HMP additive increased to 15%, the shear strength (100 °C) of the plywood was 0.79 MPa, which met the plywood requirement for exterior use (≥0.7 MPa) in accordance with Chinese National Standard (GB/T 9846.3-2004). With the addition of 9% and 15% HMP, the residual rates of the adhesive improved by 5.1% and 8.5%, respectively. The dense interpenetrating network structure improved the thermal stability of the resultant adhesive and created a compact fracture to prevent moisture intrusion, which further increased the water resistance of the adhesive.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mingsong Chen
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Gao
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Bandara N, Akbari A, Esparza Y, Wu J. Canola Protein: A Promising Protein Source for Delivery, Adhesive, and Material Applications. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nandika Bandara
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB, T6G 2R3 Canada
| | - Ali Akbari
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB, T6G 2R3 Canada
| | - Yussef Esparza
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB, T6G 2R3 Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB, T6G 2R3 Canada
| |
Collapse
|
11
|
Zhang W, Sun H, Zhu C, Wan K, Zhang Y, Fang Z, Ai Z. Mechanical and water-resistant properties of rice straw fiberboard bonded with chemically-modified soy protein adhesive. RSC Adv 2018; 8:15188-15195. [PMID: 35541306 PMCID: PMC9080012 DOI: 10.1039/c7ra12875d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, rice straw and soy protein were used to make fiberboard which may replace wood fiberboard. Soy protein isolates (SPI) were modified by epoxidized oleic acid to improve the soy protein adhesive properties such as adhesion strength and water resistance. The effects of NaOH content, the addition of modified-SPI adhesives and fiberboard density on the mechanical and water-resistant properties of the rice straw fiberboards were investigated. FTIR and XRD results of modified SPI indicated the epoxidized oleic acid and soy protein reacted with each other. FTIR and SEM images of rice straw fibers showed that NaOH solution removed the wax layer through chemical etching. The results of investigating mechanical properties and water absorption illustrate that when the soy protein-based adhesives content and density and the hot pressing temperature and pressure of fiberboard are 12%, 0.8 g cm-3, 140 °C and 6 MPa, respectively, the panels have optimal mechanical and water-resistant performances. Moreover, the panels meet the requirements of chinese medium density fiberboard (MDF) Standard of GB/T 11718-2009. Since biological raw materials are recyclable and biomass, the fiberboard bonded with modified soy protein adhesive has no toxicity and is easily biodegradable. In addition, the rice straw burned to produce haze has been preferably utilized.
Collapse
Affiliation(s)
- Wanrong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Hongguang Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Chao Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Kai Wan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Yu Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Zhengping Fang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Zhaoquan Ai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| |
Collapse
|
12
|
Yuan C, Chen M, Luo J, Li X, Gao Q, Li J. A novel water-based process produces eco-friendly bio-adhesive made from green cross-linked soybean soluble polysaccharide and soy protein. Carbohydr Polym 2017; 169:417-425. [PMID: 28504164 DOI: 10.1016/j.carbpol.2017.04.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/28/2022]
Abstract
In this study, an eco-friendly soy protein adhesive was developed that utilized two components from soybean meal without addition of any toxic material. A plant-based, water-soluble and inexpensive soybean soluble polysaccharide was used as the novel renewable material to combine with soy protein to produce a soy protein adhesive. Three-plywood was fabricated with the resulting adhesive, and its wet shear strength was measured. The results showed the wet shear strength of plywood bonded by the adhesive reached 0.99MPa, meeting the water resistance requirement for interior use panels. This improvement was attributed to the following reasons: (1) Combination of cross-linked soybean soluble polysaccharide and soy protein formed an interpenetrating network structure, improving the thermal stability and water resistance of the cured adhesive. (2) Adding CL-SSPS decreased the adhesive viscosity to 15.14Pas, which increased the amount of the adhesive that penetrate the wood's surface and formed more interlocks.
Collapse
Affiliation(s)
- Cheng Yuan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingsong Chen
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Luo
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaona Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|