1
|
Dong Z, Cui Z, Jin J, Cheng X, Wu G, Wang X, Jin Q. Enzymatic Synthesis of Structured Lipids Enriched with Medium- and Long-Chain Triacylglycerols via Pickering Emulsion-Assisted Interfacial Catalysis: A Preliminary Exploration. Molecules 2024; 29:915. [PMID: 38398664 PMCID: PMC10893273 DOI: 10.3390/molecules29040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Medium- and long-chain triacylglycerol (MLCT), as a novel functional lipid, is valuable due to its special nutritional properties. Its low content in natural resources and inefficient synthesis during preparation have limited its practical applications. In this study, we developed an effective Pickering emulsion interfacial catalysis system (PE system) for the enzymatic synthesis of MLCT by trans-esterification. Lipase NS 40086 served simultaneously as a catalyst and a solid emulsifier to stabilize the Pickering emulsion. Benefitting from the sufficient oil-water interface, the obtained PE system exhibited outstanding catalytic efficiency, achieving 77.5% of MLCT content within 30 min, 26% higher than that of a water-free system. The Km value (0.259 mM) and activation energy (14.45 kJ mol-1) were 6.8-fold and 1.6-fold lower than those of the water-free system, respectively. The kinetic parameters as well as the molecular dynamics simulation and the tunnel analysis implied that the oil-water interface enhanced the binding between substrate and lipase and thus boosted catalytic efficiency. The conformational changes in the lipase were further explored by FT-IR. This method could give a novel strategy for enhancing lipase activity and the design of efficient catalytic systems to produce added-value lipids. This work will open a new methodology for the enzymatic synthesis of structured lipids.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| | - Ziheng Cui
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| | - Xinyi Cheng
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| | - Gangcheng Wu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.D.); (J.J.); (X.C.); (G.W.); (X.W.)
| |
Collapse
|
2
|
Yu J, Yan Z, Mi L, Wang L, Liu Z, Ye X, Jin Q, Pang J, Wei W, Wang X. Medium- and long-chain triacylglycerols and di-unsaturated fatty acyl-palmitoyl-glycerols in Chinese human milk: Association with region during the lactation. Front Nutr 2022; 9:1040321. [PMID: 36313110 PMCID: PMC9614417 DOI: 10.3389/fnut.2022.1040321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
The triacylglycerols (TAGs) of medium- and long-chain triacylglycerols (MLCT) and di-unsaturated fatty acyl-palmitoyl-glycerols (UPU) in human milk provide better nutritional effects, and should be prioritized as crucial focuses on neonatal nutrition research. However, little has been done on the influences of the lactation stage and regional diversity on MLCT and UPU. In this study, we collected 204 human milk samples during colostrum, 1st and 4th month from the north (Baotou), central (Beijing), east (Jinan), southwest (Kunming), southeast (Shenzhen), and northwest (Xining) regions of China. There were 122 species of TAGs detected with UPLC-Q-TOF-MS, including 60 kinds of MLCT and 15 kinds of UPU. The MLCT and UPU type TAGs in human milk were ~27 and ~38%, respectively. The sum content of MLCT and UPU in human milk was stable. Compared to the regional diversity, lactation stages showed more obvious influences on MLCT and UPU composition. Moreover, a summary of TAG studies indicated that Chinese human milk showed a higher ratio of O-P-L to O-P-O than in western countries.
Collapse
Affiliation(s)
- Jiahui Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhiyuan Yan
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - Lijuan Mi
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Lei Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengdong Liu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - Xingwang Ye
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - QingZhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinzhu Pang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Jinzhu Pang
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China,*Correspondence: Wei Wei
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China,Xingguo Wang
| |
Collapse
|
3
|
Karrar E, Mohamed Ahmed IA, Huppertz T, Oz F, Wei W, Wang X. Determination of triacylglycerols in milk fat from different species using UPLC–Q-TOF–MS. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Wang L, Zhang X, Yuan T, Jin Q, Wei W, Wang X. Digestion of Medium- and Long-Chain Triacylglycerol and sn-2 Palmitate in Infant Formula: A Study Based on Dynamic In Vitro Simulation of Infant Gastrointestinal Lipolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3263-3271. [PMID: 35255218 DOI: 10.1021/acs.jafc.1c07118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, lipolysis of triacylglycerols (TAGs) in infant formula (IF) composed of different oils and supplied with different structured TAGs, including medium- and long-chain triacylglycerol (MLCT) and sn-2 palmitate, was studied using a dynamic digestion model simulating the infant gastrointestinal tract. The molecular species of digestion products released during digestion, including diacylglycerols, monoacylglycerols (MAGs), and free fatty acids, as well as undigested TAGs, were identified and quantified using liquid chromatography-mass spectrometry. We observed clearly different lipolysis degrees (LDs), with diversity in digestion products of different IFs. IFs supplied with MLCT showed moderate medium-chain fatty acid release during gastric digestion and higher LD after intestinal digestion. The presence of sn-2 palmitate in IF was associated with higher content of MAG-16:0 in digestion products. The species and contents of digestion products in IF were highly influenced by structured TAGs.
Collapse
Affiliation(s)
- Lei Wang
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinghe Zhang
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tinglan Yuan
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Yu J, Wei W, Wang F, Yu R, Jin Q, Wang X. Evaluation of total, sn-2 fatty acid, and triacylglycerol composition in commercial infant formulas on the Chinese market: A comparative study of preterm and term formulas. Food Chem 2022; 384:132477. [PMID: 35219236 DOI: 10.1016/j.foodchem.2022.132477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/10/2022] [Accepted: 02/13/2022] [Indexed: 11/26/2022]
Abstract
Preterm infants with physiological immaturity require higher lipid provision than term infants. This study compared the lipid composition, including total, sn-2 fatty acid, and triacylglycerol (TAG) compositions in 14 preterm formulas and 25 term formulas in the Chinese market, in 2020-2021. Preterm formula had higher medium-chain fatty acid (MCFA) and comparable C22:6n-3 (DHA) contents than term formula. Notably, significantly lower C16:0 and C18:0 (p < 0.001) were distributed on the sn-2 position in preterm formula. Two hundred and thirteen kinds of TAG molecular species were identified using UPLC-Q-TOF-MS. In preterm formula, significantly higher Ca-Ca-Cy and Ca-Ca-Ca (p < 0.001) existed. These clear distinctions showed the challenge of the progress in preterm formula, such as DHA status, MCFA pattern, and TAG esterified with palmitic acid on the sn-2 position.
Collapse
Affiliation(s)
- Jiahui Yu
- International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fangmin Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Qingzhe Jin
- International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Wang Y, Cao M, Liu R, Chang M, Wei W, Jin Q, Wang X. The enzymatic synthesis of EPA-rich medium- and long-chain triacylglycerol improves the digestion behavior of MCFA and EPA: evidence on in vitro digestion. Food Funct 2022; 13:131-142. [PMID: 34870663 DOI: 10.1039/d1fo02795f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medium-chain triglyceride (MCT) and eicosapentaenoic acid (EPA) have been widely applied in nutritional supplementation. However, when administered individually or mixed, they were unable to maximize their nutritional value. Hence, EPA-rich medium- and long-chain triacylglycerol (MLCT) was synthesized from MCT and EPA-rich fish oil (FO) by enzymatic transesterification. The fatty acids in triglyceride (TAG) were rearranged which resulted in significant changes in TAG profiles compared to the physical mixture of MCT and FO (PM). EPA-containing MML (MML, MLM and LMM) and LLM (LLM, LML and MLL) type TAGs account for 70.21%. The fate of different oils (MCT, FO, PM, and MLCT) across the gastrointestinal tract was subsequently simulated using an in vitro digestion model. The results showed that the physical and structural characteristics of different oils during digestion depended upon the oil type and the microenvironment they were in. After 120 min of small intestine digestion, the degree of hydrolysis for MLCT was higher than that for the other three oils. The final FFA release level was in the following order: MLCT (102.79%) > MCT (95.20%) > PM (85.81%) > FO (74.18%). This can be attributed to the composition and positional distribution of fatty acids in TAGs. What's more, LCFAs (EPA) in MLCT mainly existed in the form of sn-2 MAG, which was conducive to their subsequent absorption and transport. These results may aid in the future rational design of structural lipids, thereby regulating lipid digestion and maximizing the nutritional value of oils.
Collapse
Affiliation(s)
- Yandan Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Minjie Cao
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ruijie Liu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ming Chang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Wei
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Sun X, Zhang T, Zhao P, Tao G, Liu R, Chang M, Wang X. 2D2D HILIC‐ELSD/UPLC‐Q‐TOF‐MS Method for Acquiring Phospholipid Profiles and the Application in
Caenorhabditis elegans. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaotian Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- European Research Institute for the Biology of Aging University Medical Center Groningen University of Groningen Groningen 9713 AV The Netherlands
| | - Pinzhen Zhao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Guanjun Tao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ruijie Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ming Chang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
9
|
Analysis of Triacylglycerols in Sumac (Rhus typhina L.) Seed Oil from Different Origins by UPLC-Q-TOF-MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Highly efficient synthesis of 4,4-dimethylsterol oleates using acyl chloride method through esterification. Food Chem 2021; 364:130140. [PMID: 34175623 DOI: 10.1016/j.foodchem.2021.130140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
In this study, the 4,4-dimethylsterol oleates were efficiently synthesized through esterification of 4,4-dimethylsterols and oleoyl chloride. The impact of reaction parameters on the 4,4-dimethylsterol conversion were investigated. The 4,4-dimethylsterol conversion increased with pyridine dosage, molar ratio of oleoyl chloride to 4,4-dimethylsterols, and temperature. The highest conversion of 99.27% was obtained with molar ratio of 1.1:1 at 313 K for 60 min. A second-order kinetic model describing acyl chloride esterification featuring high correlation coefficients was established. Arrhenius-Van't Hoff plot suggested activation energy and pre-exponential factor were 15.54 kJ mol-1 and 1.78 × 103 L mol-1 min-1, respectively. The molecular structure of 4,4-dimethylsterol oleates were finally identified by attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), ultra-performance liquid chromatography system coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS), and nuclear magnetic resonance (NMR).
Collapse
|
11
|
Xie L, Zhang T, Zheng L, Xie D, Jin J, Wang X, Jin Q. Chemical Compositions and Oxidative Stabilities of
Ginkgo biloba
Kernel Oils from Four Cultivated Regions in China. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Liyou Zheng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dan Xie
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
12
|
Chang M, Zhang T, Li L, Lou F, Ma M, Liu R, Jin Q, Wang X. Choreography of multiple omics reveals the mechanism of lipid turnover in Schizochytrium sp. S31. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Chang M, Yang J, Guo X, Zhang T, Liu R, Jin Q, Wang X. Medium / long-chain structured triglycerides are superior to physical mixtures triglycerides in Caenorhabditis elegans lifespan through an AMPK modified pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Chang M, Zhao P, Zhang T, Wang Y, Guo X, Liu R, Jin Q, Wang X. Characteristic volatiles fingerprints and profiles determination in different grades of coconut oil by HS‐GC‐IMS and HS‐SPME‐GC‐MS. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ming Chang
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Pinzhen Zhao
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Tao Zhang
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Yong Wang
- Department of Food Science and Engineering Jinan University Guangzhou Guangdong510632China
| | - Xin Guo
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu214122China
| |
Collapse
|
15
|
Chang M, Zhang T, Guo X, Liu Y, Liu R, Jin Q, Wang X. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Yuan T, Wei W, Wang X, Jin Q. Biosynthesis of structured lipids enriched with medium and long-chain triacylglycerols for human milk fat substitute. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Wang X, Jiang C, Xu W, Miu Z, Jin Q, Wang X. Enzymatic synthesis of structured triacylglycerols rich in 1,3-dioleoyl-2-palmitoylglycerol and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol in a solvent-free system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Karrar E, Sheth S, Wei W, Wang X. Supercritical CO
2
extraction of gurum (
Citrulluslanatus var. Colocynthoide
) seed oil and its properties comparison with conventional methods. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
- Department of Food Engineering, Faculty of Engineering and TechnologyUniversity of Gezira Wad Medani Sudan
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi Jiangsu China
| | - Wei Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|
19
|
Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00182-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zaaboul F, Cao C, Raza H, Jun ZZ, Xu YJ, Liu YF. The Triacylglycerol Profile of Oil Bodies and Oil Extracted from Argania spinosa Using the UPLC Along with the Electrospray Ionization Quadrupole-Time-of-Flight Mass Spectrometry (LC-Q-TOF-MS). J Food Sci 2019; 84:762-769. [PMID: 30875441 DOI: 10.1111/1750-3841.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/28/2022]
Abstract
The triacylglycerol (TAG) matrix of argan oil (AO) bodies (AOB) along with the TAGs of AO extracted from the same kernels using an organic solvent, were identified and quantified using the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generally, both samples showed a similar TAGs profile but AO found to have three extra TAGs in low amount. In total 23 and 26 different TAGs were identified in AOBs and AO, respectively. The most abundant TAGs were OOL, POO, OOO, and POL in both samples. Furthermore, oleic acid, linoleic acid, and palmitic acid were the major fatty acids in both AOBs and AO. To the best of our knowledge, this is the first research that studied the TAGs matrix of an oil body revealing no major difference between the TAGs profile protected by the AOBs membrane and the oil extracted from the whole seed. PRACTICAL APPLICATION: Seed and kernels oil bodies emulsion tend to be the new source of emulsified oil in food and cosmetic industries. However, before replacing a product with another, we have to make sure that the new alternative can offer better or at least similar benefits. Our results showed that the triacylglycerols (TAGs) matrix and the argan oil (AO) share the same TAGs profile with a relatively close percentage. Therefore, AO bodies can be the perfect pre-emulsified oil for some food products like sauces and creams.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Zhao Zheng Jun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Yong Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| | - Yuan Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, Jiangsu Province, 214122, PR China
| |
Collapse
|
21
|
Zhang X, Qi C, Zhang Y, Wei W, Jin Q, Xu Z, Tao G, Wang X. Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem 2019; 275:712-720. [DOI: 10.1016/j.foodchem.2018.09.150] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/10/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
|
22
|
Sun C, Wei W, Su H, Zou X, Wang X. Evaluation of sn-2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage. Food Chem 2017; 242:29-36. [PMID: 29037692 DOI: 10.1016/j.foodchem.2017.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/29/2022]
Abstract
The sn-2 fatty acid composition of 180 commercial infant, follow-on and growing-up formulas with three fat sources (plant oil, cows' milk and goats' milk) was investigated and compared with mature human milk (MHM). Sn-2 fatty acids in formulas were mostly dependent on fat source and stage. Compared with MHM, all types of formulas contained lower levels of palmitic acid (PA), saturated fatty acid and long-chain polyunsaturated fatty acids (LC-PUFA), and higher levels of oleic acid (OA), linoleic acid (LA) and α-linolenic acid (LNA) at the sn-2 position. Even some formulas were supplemented with 1,3-dioleoyl-2-palmitoylglycerol, the proportions of relative PA at the sn-2 position in formulas were much lower than that in MHM. Moreover, formulas had higher proportions of relative OA, LA and LNA, and lower LC-PUFAs at the sn-2 position. This study indicated that there were significant differences in the positional distribution of fatty acids between formulas and MHM.
Collapse
Affiliation(s)
- Cong Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Hang Su
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Xiaoqiang Zou
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Abed SM, Zou X, Ali AH, Jin Q, Wang X. Profiling of triacylglycerol composition in arachidonic acid single cell oil from Mortierella alpina by using ultra-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Jin J, Zheng L, Mwinyi Pembe W, Zhang J, Xie D, Wang X, Huang J, Jin Q, Wang X. Production of sn-1,3-distearoyl-2-oleoyl-glycerol-rich fats from mango kernel fat by selective fractionation using 2-methylpentane based isohexane. Food Chem 2017; 234:46-54. [PMID: 28551261 DOI: 10.1016/j.foodchem.2017.04.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 11/17/2022]
Abstract
High-purity isohexane containing 88.12% 2-methylpentane, which has a higher polarity than industrial hexane, was selected to selectively fractionate mango kernel fat to produce 1,3-distearoyl-2-oleoyl-glycerol (SOS)-rich fat. The three-stage fractionation process was optimized by considering the stearin yield and its SOS content to obtain a third stearin (TS). This fat contained a high percentage of SOS (69.2%) with only 0.8% diacylglycerol. Mass spectra and sn-2 fatty acid analyses further revealed that the TS was mainly composed of symmetrical monounsaturated triacylglycerols. Compared with cocoa butter (CB), the unique composition of the TS improved its thermal properties (35.6% and 0% solid fat content at 35°C for the TS and CB, respectively). In particular, tempered binary fat blends, which were composed of 20-50% TS and 50-80% CB, showed acceptable compatibility at 20-28°C. The TS could be utilized by chocolate manufacturers to make products suitable for sale and consumption in tropical conditions.
Collapse
Affiliation(s)
- Jun Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Liyou Zheng
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Warda Mwinyi Pembe
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministry of Health, Zanzibar Food and Drugs Board, Airport Road, Mombasa, Zanzibar, Tanzania
| | - Jinfang Zhang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Dan Xie
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; ZhongHai Ocean (Wuxi) Marine Equipment Engineering Co., Ltd, Jiangnan University National University Science Park, 100 Jinxi Road, Wuxi, Jiangsu 214125, PR China
| | - Xiaosan Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jianhua Huang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|