1
|
Song W, Sun S, Wu T, Yang R, Tian S, Xu C, Jiang B, Yuan S, Hou W, Wu C, Han T. Geographic distributions and the regionalization of soybean seed compositions across China. Food Res Int 2023; 164:112364. [PMID: 36737952 DOI: 10.1016/j.foodres.2022.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
As one of major food crops, soybean is grown over a broad ecological region in China with considerable variations in environmental conditions, and the seed compositions of soybeans are diverse among different regions. To clarify the spatial patterns of soybean seed compositions, crude oil, protein, and 11 categories of functional components were quantified in 1792 soybean samples collected from a vast range of soybean planting regions across China spanning from 2010 to 2017. The Kriging interpolation maps presented a clear north-to-south (high latitude to low latitude) increasing trend in contents of crude protein and dietary fiber and decreasing trend in contents of crude oil, phospholipids, saponins, and carotenoids. Soybeans with high-level of total oligosaccharide were concentrated in the central region. Based on the geographical distribution of soybean nutritional components, weather conditions, and cultivation systems, the soybean production areas in China were divided into three regions and 10 subregions. This study highlights the geographic distribution of soybean nutritional compositions and provides scientific evidence for guiding the construction of high-quality edible soybean production bases in China.
Collapse
Affiliation(s)
- Wenwen Song
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruping Yang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Shiyan Tian
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailong Xu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Zhao L, Wei X, Zheng T, Gou YN, Wang J, Deng JX, Li MJ. Evaluation of Pathogenic Fusarium spp. Associated with Soybean Seed ( Glycine max) in Hubei Province, China. PLANT DISEASE 2022; 106:3178-3186. [PMID: 35522955 DOI: 10.1094/pdis-12-21-2793-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max L.) seeds showing serious symptoms from rotted pods were collected from fields during the harvesting period (July to August 2020) in Taihu Farm, Jingzhou City, Hubei Province, China. Fusarium strains were frequently encountered during fungal isolation. According to the morphology and prepathogenicity tests, six strains showing variable effects on the seeds were selected for identification based on morphology and multilocus phylogenetic analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA, translation elongation factor (EF-1α), calmodulin (CAM), β-tubulin (TUB), and partial RNA polymerase second largest subunit (RPB2), and to evaluate the pathogenic abilities on seed, root, and pod. The results indicated that the strains contained two species (Fusarium fujikuroi and F. proliferatum) in the Fusarium fujikuroi species complex (FFSC) and two species (F. luffae and F. sulawense) from the Fusarium incarnatum-equiseti species complex (FIESC). The two species of FFSC were more aggressive than those of FIESC on soybean seed, root, and pod. Among the strains, F. proliferatum YZU 201408 exhibited the most pathogenicity on all tests, with 72.2 to 90% disease severity.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xin Wei
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tao Zheng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ya-Nan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Wang
- Department of Agriculture, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jian-Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Mei-Jia Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
3
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Ghosh S, Feng Y, Huai Y, Gebregziabher BS, Li J, Li B, Sun J. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Azam M, Zhang S, Abdelghany AM, Shaibu AS, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J. Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res Int 2020; 130:108957. [PMID: 32156396 DOI: 10.1016/j.foodres.2019.108957] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Soybean (Glycine max L. Merrill) isoflavones are secondary metabolites of great interest because of their beneficial impact on human health. We profiled the seed isoflavone composition of 1168 soybean accessions collected from diverse ecoregions of China in three locations over two years. We observed significant differences in isoflavone content among the accessions, accession types, years of growth and ecoregions of origin. Total isoflavone (TIF) concentration of the soybean accessions ranged from 745 μg g-1 to 5253.98 μg g-1, which represents a 7-fold difference. The highest mean TIF concentration (2689.27 μg g-1) was observed in the Huang Huai Hai Valley Region (HR) accessions, followed by accessions from the Southern Region (SR) and Northern Region (NR) with TIF concentration of 2518.91 μg g-1 and 1942.78 μg g-1, respectively. Thirty-five accessions were identified as elite soybean resources based on their higher TIF concentration (4024.74 μg g-1 to 5253.98 μg g-1). Pairwise correlation analysis showed significant positive correlations between individual isoflavones and TIF concentrations. Malonyldaidzin and malonylgenistin showed the highest correlations with TIF concentration (r = 0.90 and r = 0.92, respectively), whereas acetyldaidzin showed the lowest correlation. The main isoflavone components had significant negative correlations with latitude and longitude, indicating that the geographical origin of the accessions influenced their seed isoflavone composition. Based on principal component analysis, glycosides and malonylglycosides of isoflavones were the major discriminative components for the soybean accessions. The present study demonstrated the geographical distribution of soybean seed isoflavone concentrations across the main ecoregion of China. The identified soybean accessions with both high and low TIF concentrations, which are desirable materials for industrial uses and could also be used as parents to breed soybean lines with improved isoflavone quantity and composition in the seeds.
Collapse
Affiliation(s)
- Muhammad Azam
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Ahmed M Abdelghany
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Abdulwahab S Shaibu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yue Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yanfei Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yu Tian
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Huilong Hong
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bin Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
5
|
Song W, Yang R, Yang X, Sun S, Mentreddy SR, Jiang B, Wu T, Tian S, Sapey E, Wu C, Hou W, Ren G, Han T. Spatial differences in soybean bioactive components across China and their influence by weather factors. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X. Impact of Elevated CO 2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. FRONTIERS IN PLANT SCIENCE 2018; 9:1413. [PMID: 30386351 PMCID: PMC6199416 DOI: 10.3389/fpls.2018.01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/06/2018] [Indexed: 05/26/2023]
Abstract
Although the effect of elevated CO2 (eCO2) on soybean yield has been well documented, few studies have addressed seed quality, particularly at the fresh edible (R6) and mature stages (R8). Under the current global scenario of increasing CO2 levels, this potentially threatens the nutritional content and quality of food crops. Using four soybean cultivars, we assessed the effects of eCO2 on the concentrations of crude protein, crude oil, and isoflavones and analyzed the changes in free amino acids, fatty acids, and mineral elements in seeds. At R6, eCO2 had no influence on soybean seed protein and oil concentrations. At R8, eCO2 significantly decreased seed protein concentration but increased seed oil concentration; it also significantly decreased total free amino acid concentration. However, at the same stage, the proportion of oleic acid (18:1) among fatty acids increased in response to eCO2 in the cultivars of Zhongke-maodou 2 (ZK-2) and Zhongke-maodou 3 (ZK-3), and a similar trend was found for linoleic acid (18:2) in Zhongke-maodou 1 (ZK-1) and Hei-maodou (HD). Total isoflavone concentrations increased significantly at both the R6 and R8 stages in response to eCO2. Compared with ambient CO2, the concentrations of K, Ca, Mg, P, and S increased significantly under eCO2 at R6, while the Fe concentration decreased significantly. The response of Zn and Mn concentrations to eCO2 varied among cultivars. At R8 and under eCO2, Mg, S, and Ca concentrations increased significantly, while Zn and Fe concentrations decreased significantly. These findings suggest that eCO2 is likely to benefit from the accumulation of seed fat and isoflavone but not from that of protein. In this study, the response of seed mineral nutrients to eCO2 varied between cultivars.
Collapse
Affiliation(s)
- Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Qiuying Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Changkai Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Cheng Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|