1
|
Sánchez-Bravo P, Martínez-Tomé J, Hernández F, Sendra E, Noguera-Artiaga L. Conventional vs. Organic: Evaluation of Nutritional, Functional and Sensory Quality of Citrus limon. Foods 2023; 12:4304. [PMID: 38231768 DOI: 10.3390/foods12234304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Organic farming is growing rapidly worldwide since it is perceived as more respectful of the environment than conventional farming. In this sense, organic agriculture is highly appreciated by consumers since consumers around the world believe that organic food has a higher content of beneficial compounds for health and consider it of higher quality. For that reason, the objective of this research was to evaluate the nutritional, sensorial, and functional quality of the 'Fino 49' lemon grafted on Citrus macrophylla in conventional and organic cultivation. Fatty acids, amino acids, total phenol, and polyphenols were quantified, antioxidant activity was measured, and sensory descriptive analysis was performed. Conventional farming led to an increase in amino acid content (641 mg L-1) and an increase in polyunsaturated fatty acids (254 mg 100 g-1) and monounsaturated fatty acids (37.61 mg 100 g-1). On the other hand, organically produced lemon fruits had better sensory profile (highlighting overall aroma (6.5), lemon odor (6.8), sourness (5.8), floral (0.6), and fresh lemon flavor (9.8)), and lower thrombogenicity index (0.15). The type of cultivation (organic and conventional) had no influence on the antioxidant activity (~1.60, ~3.08, and ~4.16 mmol Trolox L-1 for ABTS+, DPPH•, and FRAP, respectively) and polyphenols content (85.51 and 86.69 conventional and organic, respectively). However, to establish the advantages and disadvantages of different types of cultivation on lemon quality more studies are needed.
Collapse
Affiliation(s)
- Paola Sánchez-Bravo
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Juan Martínez-Tomé
- Department of Plant Sciences and Microbiology, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Francisca Hernández
- Department of Plant Sciences and Microbiology, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Esther Sendra
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| | - Luis Noguera-Artiaga
- Research Group "Food Quality and Safety", Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University of Elche (UMH), Carretera de Beniel Km 3.2, 03312 Orihuela, Spain
| |
Collapse
|
2
|
Liu W, Mao X, Zhou Z. Analysis of physicochemical properties, fatty acid composition, and antioxidant activity of seed oil extracted from 12 citrus materials. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Liu
- College of Horticulture and Landscape Architecture Southwest University Chongqing 400716 China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture Southwest University Chongqing 400716 China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture Southwest University Chongqing 400716 China
- The Southwest Institute of Fruits Nutrition Banan District Chongqing 400054 China
- Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area Chongqing 404120 China
| |
Collapse
|
3
|
Zheng Y, Gao P, Wang S, Ruan Y, Zhong W, Hu C, He D. Comparison of Different Extraction Processes on the Physicochemical Properties, Nutritional Components and Antioxidant Ability of Xanthoceras sorbifolia Bunge Kernel Oil. Molecules 2022; 27:molecules27134185. [PMID: 35807441 PMCID: PMC9268096 DOI: 10.3390/molecules27134185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we investigated and compared the oil yield, physicochemical properties, fatty acid composition, nutrient content, and antioxidant ability of Xanthoceras sorbifolia Bunge (X. sorbifolia) kernel oils obtained by cold-pressing (CP), hexane extraction (HE), aqueous enzymatic extraction (AEE), and supercritical fluid extraction (SFE). The results indicated that X. sorbifolia oil contained a high percentage of monounsaturated fatty acids (49.31–50.38%), especially oleic acid (30.73–30.98%) and nervonic acid (2.73–3.09%) and that the extraction methods had little effect on the composition and content of fatty acids. X. sorbifolia oil is an excellent source of nervonic acid. Additionally, the HE method resulted in the highest oil yield (98.04%), oxidation stability index (9.20 h), tocopherol content (530.15 mg/kg) and sterol content (2104.07 mg/kg). The DPPH scavenging activity rates of the oil produced by SFE was the highest. Considering the health and nutritional value of oils, HE is a promising method for X. sorbifolia oil processing. According to multiple linear regression analysis, the antioxidant capacity of the oil was negatively correlated with sterol and stearic acid content and positively correlated with linoleic acid, arachidic acid and polyunsaturated fatty acid content. This information is important for improving the nutritional value and industrial production of X. sorbifolia.
Collapse
Affiliation(s)
- Yuling Zheng
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Pan Gao
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
- Correspondence: ; Tel./Fax: +86-027-83910015
| | - Shu Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Yuling Ruan
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Wu Zhong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Chuanrong Hu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Dongping He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| |
Collapse
|
4
|
Csuti A, Sik B, Ajtony Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - a Review. Crit Rev Anal Chem 2022; 54:473-486. [PMID: 35658668 DOI: 10.1080/10408347.2022.2082241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Naringin is a flavonoid found primarily in citrus species with especially high concentrations being present in grapefruit (Citrus paradisi), bitter orange (Citrus aurantium), and pomelo (Citrus grandis). Because of its many positive effects on human health, naringin has been the focus of increasing attention in recent years. Recently, conventional extraction methods have been commonly replaced with unconventional methods, such as ultrasound-assisted extraction (UAE) and other, more eco-friendly extraction methods requiring little-to-no environmentally harmful solvents or significantly less energy. Naringin analysis is most commonly done via high-performance liquid chromatography (HPLC), and ultrahigh-performance liquid chromatography (UHPLC) coupled with a mass spectrometer (MS) or a photodiode array (DAD) detector. The aim of this review is to provide an overview of recent trends developments in the extraction, sample preparation, and liquid chromatographic analysis of the compound originating from citrus fruits or their products.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Beatrix Sik
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| | - Zsolt Ajtony
- Department of Food Science, Széchenyi István University, 15 Lucsony Str, Mosonmagyaróvár, 9200, Hungary
| |
Collapse
|
5
|
The impact of lemon seeds oil microcapsules based on a bilayer macromolecule carrier on the storage of the beef jerky. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Bürger F, Koch M, Fraatz MA, Omarini AB, Berger RG, Zorn H. Production of an Anise- and Woodruff-like Aroma by Monokaryotic Strains of Pleurotus sapidus Grown on Citrus Side Streams. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030651. [PMID: 35163915 PMCID: PMC8838675 DOI: 10.3390/molecules27030651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.
Collapse
Affiliation(s)
- Friederike Bürger
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Maximilian Koch
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Marco A. Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Alejandra B. Omarini
- CONICET Asociación para el Desarrollo de Villa Elisa y Zona Héctor de Elia 1247, Villa Elisa E3265, Entre Ríos, Argentina;
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Ralf G. Berger
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-(0)-641-99-349-00
| |
Collapse
|
7
|
Lugo-Flores MA, Quintero-Cabello KP, Palafox-Rivera P, Silva-Espinoza BA, Cruz-Valenzuela MR, Ortega-Ramirez LA, Gonzalez-Aguilar GA, Ayala-Zavala JF. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021; 9:1669. [PMID: 34829898 PMCID: PMC8615420 DOI: 10.3390/biomedicines9111669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial diseases and reactive oxygen species can cause dental caries and oral cancer. Therefore, the present review analyzes and discusses the antibacterial and antioxidant properties of synthetic and plant-derived substances and their current and future patents to formulate dental products. The reviewed evidence indicates that chlorhexidine, fluorides, and hydrogen peroxide have adverse effects on the sensory acceptability of oral care products. As an alternative, plant-derived substances have antimicrobial and antioxidant properties that can be used in their formulation. Also, adding plant metabolites favors the sensory acceptability of dental products compared with synthetic compounds. Therefore, plant-derived substances have antibacterial, antioxidant, and flavoring activity with the potential to be used in the formulation of toothpaste, mouth rinses, dentures cleansers-fixatives, and saliva substitutes.
Collapse
Affiliation(s)
- Marco A. Lugo-Flores
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Karen P. Quintero-Cabello
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Patricia Palafox-Rivera
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Brenda A. Silva-Espinoza
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Manuel Reynaldo Cruz-Valenzuela
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Luis Alberto Ortega-Ramirez
- Unidad Académica San Luis Río Colorado, Universidad Estatal de Sonora, Carretera, Sonoyta-San Luis Río Colorado km. 6.5, Parque Industrial, San Luis Río Colorado C.P. 83500, Sonora, Mexico;
| | - Gustavo Adolfo Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| |
Collapse
|
8
|
Park YS, Kim ID, Dhungana SK, Park EJ, Park JJ, Kim JH, Shin DH. Quality Characteristics and Antioxidant Potential of Lemon ( Citrus limon Burm. f.) Seed Oil Extracted by Different Methods. Front Nutr 2021; 8:644406. [PMID: 34568400 PMCID: PMC8458774 DOI: 10.3389/fnut.2021.644406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lemon (Citrus limon Burm. f.) is one of the most widely produced and consumed fruits in the world. The seeds of lemon are generally discarded as waste. The purpose of this study was to investigate the quality characteristics and antioxidant potential of lemon seed oil obtained by four extraction methods (roasted-pressing at 170°C, RP-170; roasted-pressing at 100°C, RP-100; cold-pressing, CP; and supercritical fluid, SF). No significant differences in the viscosity, density, and refractive index were observed in the oil obtained from different methods. In the case of Hunter's value, L (lightness) and b (yellowness) values of SF were higher than those of the others. The oil obtained by the CP method exhibited higher levels of Ca (252.17 mg/kg), Cu (2.38 mg/kg), K (225.98 mg/kg), and Mo (0.47 mg/kg) than that of other methods. The highest contents of total phenols (165.90 mg/mL) and flavonoids (21.69 mg/mL) were significantly high in oil obtained by the SF method. Oleic and linoleic acids consisted of principal fatty acids, which were significantly higher in oil obtained by RP-170. Higher amounts of volatile flavor compounds, such as γ-terpinene, sabinene, and limonene, were observed in CP compared to those observed for the other methods. This study elucidates the effects of different methods of oil extraction on the composition of lemon seed oil and highlights potential applications of these benefits in the food, cosmetic, pharmaceutical, and/or fragrance industries.
Collapse
Affiliation(s)
- Yong-Sung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Il-Doo Kim
- Department of International Studies, International Institute of Agricultural Research and Development, Kyungpook National University, Daegu, South Korea
| | - Sanjeev Kumar Dhungana
- National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Eun-Jung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Jung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-Ho Kim
- Department of Green Technology Convergence, Konkuk University, Chungju-si, South Korea
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Song N, Hursthouse A, McLellan I, Wang Z. Treatment of environmental contamination using sepiolite: current approaches and future potential. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2679-2697. [PMID: 32918158 PMCID: PMC8275560 DOI: 10.1007/s10653-020-00705-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
To evaluate the potential of sepiolite-based materials to resolve environmental pollution problems, a study is needed which looks at the whole life cycle of material application, including the residual value of material classified as waste from the exploitation of sepiolite deposits in the region or from its processing and purification. This would also maximize value from the exploitation process and provide new potential for local waste management. We review the geographical distribution of sepiolite, its application in the treatment of potentially toxic elements in soil and across the wider landscape, an assessment of modification and compositional variation of sepiolite-based applications within site remediation and wastewater treatment. The potential of sepiolite-based technologies is widespread and a number of processes utilize sepiolite-derived materials. Along with its intrinsic characteristics, both the long-term durability and the cost-effectiveness of the application need to be considered, making it possible to design ready-to-use products with good market acceptance. From a critical analysis of the literature, the most frequently associated terms associated with sepiolite powder are the use of lime and bentonite, while fly ash ranked in the top ten of the most frequently used material with sepiolite. These add improved performance for the inclusion as a soil or wastewater treatment options, alone or applied in combination with other treatment methods. This approach needs an integrated assessment to establish economic viability and environmental performance. Applications are not commonly evaluated from a cost-benefit perspective, in particular in relation to case studies within geographical regions hosting primary sepiolite deposits and wastes that have the potential for beneficial reuse.
Collapse
Affiliation(s)
- Na Song
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Andrew Hursthouse
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Iain McLellan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Zhenghua Wang
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
10
|
|
11
|
Luhmer K, Schulze-Kaysers N, Feuereisen M, Wirth L, Maretzky F, Wüst M, Blum H, Dörr E, Pude R. Fatty Acid Composition, Tocopherols, Volatile Compounds, and Sensory Evaluation of Low Morphine Yielding Varieties of Poppy ( Papaver somniferum L.) Seeds and Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3439-3451. [PMID: 33722000 DOI: 10.1021/acs.jafc.0c07183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low morphine yielding winter ('Zeno Morphex') and summer ('Viola', 'Mieszko', 'Borowski') poppy varieties were investigated for their chemical composition and sensory properties. The oil content of the 13 seed samples as well as that of fatty acids, tocopherols, and volatile compounds in the respective oils were determined, and the sensory profiles of the seeds and oils were established. Linoleic acid made up 70.7-75.2% of the fatty acids. High amounts of γ-tocopherol were detected, especially in variety 'Viola' (287 ± 34 mg kg-1), while δ-tocopherol was only present in 'Zeno Morphex' (3.9 ± 0.6 mg kg-1). The most abundant volatiles were caproic acid (1.4-148 μg g-1), hexanal (0.9-15.2 μg g-1), 1-hexanol (0.3-20.1 μg g-1), limonene (1.3-9.4 μg g-1), and 2-pentylfuran (1.0-7.8 μg g-1). The sensory panel distinguished samples in particular by fatty/oily, rancid, sweet, and green attributes, the green aroma being correlated to three methoxypyrazines only present in summer poppies.
Collapse
Affiliation(s)
- Katharina Luhmer
- Institute of Crop Science and Resource Conservation-Renewable Resources, Bonn University, Klein-Altendorf 2, D-53359 Rheinbach, Germany
| | - Nadine Schulze-Kaysers
- Institute of Nutritional and Food Science-Molecular Food Technology, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Michelle Feuereisen
- Institute of Nutritional and Food Science-Molecular Food Technology, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Lukas Wirth
- Institute of Nutritional and Food Science-Food Chemistry, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Fabian Maretzky
- Institute of Nutritional and Food Science-Food Chemistry, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Matthias Wüst
- Institute of Nutritional and Food Science-Food Chemistry, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Hanna Blum
- Institute of Crop Science and Resource Conservation-Renewable Resources, Bonn University, Klein-Altendorf 2, D-53359 Rheinbach, Germany
| | - Elisa Dörr
- Institute of Nutritional and Food Science-Molecular Food Technology, Bonn University, Endenicher Allee 19b, D-53115 Bonn, Germany
| | - Ralf Pude
- Institute of Crop Science and Resource Conservation-Renewable Resources, Bonn University, Klein-Altendorf 2, D-53359 Rheinbach, Germany
- Field Lab Campus Klein-Altendorf, Bonn University, Klein-Altendorf 2, D-53359 Rheinbach, Germany
| |
Collapse
|
12
|
Zayed A, Badawy MT, Farag MA. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 2021; 355:129609. [PMID: 33799261 DOI: 10.1016/j.foodchem.2021.129609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Valorization of food byproducts has attracted recently considerable attention. Citrus fruits provide considerable non-edible residues reach 80% in juice production. They are considered agri-wastes to comprise peel, pulp and seeds. Previous investigations have focused on peel and pulp to recover value-added products. The review presents for the first-time phytochemical composition of Citrus seeds' products, i.e., oil and extracts. Fatty acids, phytosterols and tocopherols amounted as the major bioactives in Citrus seeds, in addition to limonoids, dietary fibers and flavonoids. Besides their nutritional values, these chemicals have promising applications including production of biodiesel, food enhancers and antioxidants, especially from mandarin and grapefruit seeds. Optimum conditions of the different Citrus seeds' valorization are discussed to improve extraction yield and lessen environmental hazards of solvent extraction. This review presents the best utilization practices for one of the largest cultivated fruit seeds worldwide and its different applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, El-guish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Marwa T Badawy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
13
|
Dedebas T, Ekici L, Sagdic O. Chemical characteristics and storage stabilities of different cold‐pressed seed oils. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tugba Dedebas
- Bolvadin Vocational School Food Technology Department Afyon Kocatepe University Afyon Turkey
| | - Lutfiye Ekici
- Engineering Faculty Food Engineering Department Erciyes University Kayseri Turkey
| | - Osman Sagdic
- Chemical and Metallurgical Faculty Food Engineering Department Yıldız Technical University Istanbul Turkey
| |
Collapse
|
14
|
Kaseke T, Opara UL, Fawole OA. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: effect of preharvest and processing factors. Heliyon 2020; 6:e04962. [PMID: 32995635 PMCID: PMC7502582 DOI: 10.1016/j.heliyon.2020.e04962] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Fruit seed is a by-product of fruit processing into juice and other products. Despite being treated as waste, fruit seed contains oil with health benefits comparable or even higher than the conventional seed oil from field crops. In addition to essential fatty acids, the fruit seed oil is a rich source of bioactive compounds such as tocopherols, carotenoids, flavonoids, phenolic acids and phytosterols, which have been implicated in the prevention of chronic and degenerative diseases such as cancer, diabetes and cardiovascular diseases. The emerging potential of fruit seed oil application in food and nutraceuticals has prompted researchers to study the effect of preharvest and processing factors on the seed oil quality with respect to nutritional qualities, antioxidant compounds and properties. Herein, the effect of cultivar, fruit-growing region, seeds pretreatment, seeds drying and seed oil extraction on tocopherols, polyphenols, phytosterols, carotenoids, fatty acids, antioxidant activity and oxidative stability of the fruit seed oil is critically discussed. Understanding the influence of these factors on seed oil bioactive phytochemicals, nutritional qualities and antioxidant properties is critical not only for genetically improving the oilseeds plants with desired characteristics, but also in seed oil processing and value addition. Therefore, preharvest and processing factors are essential considerations when determining the application of fruit seed oil.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
15
|
Yılmaz E, Ege ZŞ. Debittering of cold pressed grapefruit seed oil by metal‐organic framework adsorbents. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emin Yılmaz
- Faculty of Engineering Department of Food Engineering Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - Zeliha Şadan Ege
- Faculty of Engineering Department of Food Engineering Çanakkale Onsekiz Mart University Çanakkale Turkey
| |
Collapse
|
16
|
Aydeniz Güneşer B, Yilmaz E. Comparing the effects of conventional and microwave roasting methods for bioactive composition and the sensory quality of cold-pressed orange seed oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:634-642. [PMID: 30906021 PMCID: PMC6400776 DOI: 10.1007/s13197-018-3518-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023]
Abstract
This study aims to report the composition of bioactives and volatile aromatic compounds, and determine the descriptive sensory properties of cold-pressed orange seed oil. The effects of oven pre-roasting and microwave pre-roasting of the seeds before cold pressing were compared. Thirteen sensory parameters were used to define the oil samples. The major bioactive components of the orange seed oils were naringin, hesperidin, and trans-ferulic acid. Flavonoids constituted the main phenolic class with 78.5% and 74.4%, followed by phenolic acids with 21.4% and 25.5% in the oven and microwave pre-roasted oil samples. The mean concentration of hesperidin and naringin varied from 903.4 to 909.6 mg/kg and from 234.3 to 299.8 mg/kg, respectively. The results showed for the first time in the literature that orange seed oil contains some volatile aromatic compounds and glycosylated flavanones that could have functional properties. Hence, cold-pressed orange seed oil could be suggested as the new potential health-promoting oil.
Collapse
Affiliation(s)
- B. Aydeniz Güneşer
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| | - E. Yilmaz
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey
| |
Collapse
|
17
|
Karaman E, Karabiber E, Yılmaz E. Physicochemical and functional properties of the cold press lemon, orange, and grapefruit seed meals. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2017.1218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E. Karaman
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020, Çanakkale, Turkey
| | - E.B. Karabiber
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020, Çanakkale, Turkey
| | - E. Yılmaz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020, Çanakkale, Turkey
| |
Collapse
|
18
|
Karabiber E, Zorba N, Yılmaz E. Antimicrobial and functional properties of the proteins extracted from lemon, orange and grapefruit seeds press meals. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2017.1169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E.B. Karabiber
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey
| | - N.N. Zorba
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey
| | - E. Yılmaz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey
| |
Collapse
|
19
|
Akcicek A, Karasu S. Utilization of cold pressed chia seed oil waste in a low-fat salad dressing as natural fat replacer. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alican Akcicek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| |
Collapse
|
20
|
Aydeniz Güneşer B, Yilmaz E. Bitterness Reduction of Cold Pressed Grapefruit Seed Oil by Adsorbent Treatment. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Buket Aydeniz Güneşer
- Faculty of Engineering, Department of Food Engineering, Çanakkale Onsekiz Mart University; 17020 Çanakkale Turkey
| | - Emin Yilmaz
- Faculty of Engineering, Department of Food Engineering, Çanakkale Onsekiz Mart University; 17020 Çanakkale Turkey
| |
Collapse
|
21
|
The Potential of Tree Fruit Stone and Seed Wastes in Greece as Sources of Bioactive Ingredients. RECYCLING 2018. [DOI: 10.3390/recycling3010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|